Bài 1.28 trang 17 SBT giải tích 12


Đề bài

Xác định giá trị của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + mx - 5\) có cực trị:

A. \(m = 3\)             B. \(m \in \left[ {3; + \infty } \right)\)

C. \(m < 3\)             D. \(m > 3\)

Phương pháp giải - Xem chi tiết

Hàm số có cực trị khi và chỉ khi \(y'\) đổi dấu trên \(\mathbb{R}\).

Lời giải chi tiết

Ta có: \(y' = 3{x^2} - 6x + m\).

Hàm số có cực trị khi và chỉ khi \(y'\) đổi dấu trên \(\mathbb{R}\)

\( \Leftrightarrow y' = 0\) có hai nghiệm phân biệt

\( \Leftrightarrow 3{x^2} - 6x + m = 0\) có hai nghiệm phân biệt

\( \Leftrightarrow \Delta ' = 9 - 3m > 0 \Leftrightarrow m < 3\).

Chọn C.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 2: Cực trị của hàm số

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.