Bài 1.19 trang 16 SBT giải tích 12


Giải bài 1.19 trang 16 sách bài tập giải tích 12. Tìm cực trị của các hàm số sau:...

Lựa chọn câu để xem lời giải nhanh hơn

Tìm cực trị của các hàm số sau:

a) \(y = x - 6\root 3 \of {{x^2}} \)

b) \(y = (7 - x)\root 3 \of {x + 5}\)

c) \(y = {x \over {\sqrt {10 - {x^2}} }}\)

d) \(y = {{{x^3}} \over {\sqrt {{x^2} - 6} }}\)

LG a

\(y = x - 6\root 3 \of {{x^2}} \)

Phương pháp giải:

- Tính \(y'\) và tìm nghiệm.

- Lập bảng biến thiên và kết luận.

Lời giải chi tiết:

TXĐ: R

\(\begin{array}{l}
y = x - 6{x^{\frac{2}{3}}}\\
y' = 1 - 6.\frac{2}{3}{x^{ - \frac{1}{3}}} = 1 - 4.\frac{1}{{{x^{\frac{1}{3}}}}}\\
= 1 - \frac{4}{{\sqrt[3]{x}}} = \frac{{\sqrt[3]{x} - 4}}{{\sqrt[3]{x}}}\\
y' = 0 \Leftrightarrow \sqrt[3]{x} - 4 = 0\\
\Leftrightarrow \sqrt[3]{x} = 4 \Leftrightarrow x = 64
\end{array}\)

Bảng biến thiên:

Vậy ta có y = y(0) = 0 và yCT = y(64) = -32.

LG b

\(y = (7 - x)\root 3 \of {x + 5}\)

Phương pháp giải:

- Tính \(y'\) và tìm nghiệm.

- Lập bảng biến thiên và kết luận.

Lời giải chi tiết:

Hàm số xác định trên \(R\).

\(\begin{array}{l}
y = \left( {7 - x} \right){\left( {x + 5} \right)^{\frac{1}{3}}}\\
y' = \left( {7 - x} \right)'{\left( {x + 5} \right)^{\frac{1}{3}}} + \left( {7 - x} \right)\left[ {{{\left( {x + 5} \right)}^{\frac{1}{3}}}} \right]'\\
= - {\left( {x + 5} \right)^{\frac{1}{3}}} + \left( {7 - x} \right).\frac{1}{3}{\left( {x + 5} \right)^{ - \frac{2}{3}}}
\end{array}\)

\(=  - \root 3 \of {x + 5}  + {{7 - x} \over {3\root 3 \of {{{(x + 5)}^2}} }} \) \( = \frac{{ - 3\left( {x + 5} \right) + 7 - x}}{{3\sqrt[3]{{{{\left( {x + 5} \right)}^2}}}}} = \frac{{ - 4x - 8}}{{3\sqrt[3]{{{{\left( {x + 5} \right)}^2}}}}}\)

\(y' = 0 \Leftrightarrow  - 4x - 8 = 0 \Leftrightarrow x =  - 2\)

Bảng biến thiên:

Vậy \({y_{CD}} = y( - 2) = 9\root 3 \of 3 \)

LG c

\(y = {x \over {\sqrt {10 - {x^2}} }}\)

Phương pháp giải:

- Tính \(y'\) và tìm nghiệm.

- Xét dấu \(y'\) và kết luận.

Lời giải chi tiết:

TXĐ: \(D=( - \sqrt {10} ;\sqrt {10} )\) .

\(y' = \frac{{\left( x \right)'.\sqrt {10 - {x^2}}  - x.\left( {\sqrt {10 - {x^2}} } \right)'}}{{\left( {\sqrt {10 - {x^2}} } \right)'}}\)

\(= {{\sqrt {10 - {x^2}}  + {{{x^2}} \over {\sqrt {10 - {x^2}} }}} \over {10 - {x^2}}} \) \( = \frac{{\frac{{10 - {x^2} + {x^2}}}{{\sqrt {10 - {x^2}} }}}}{{10 - {x^2}}}\) \(= {{10} \over {(10 - {x^2})\sqrt {10 - {x^2}} }}\)

Vì \(y’ > 0\) với mọi \(x\in ( - \sqrt {10} ;\sqrt {10} )\)  nên hàm số đồng biến trên khoảng đó và do đó không có cực trị.

LG d

\(y = {{{x^3}} \over {\sqrt {{x^2} - 6} }}\)

Phương pháp giải:

- Tính \(y'\) và tìm nghiệm.

- Lập bảng biến thiên và kết luận.

Lời giải chi tiết:

TXĐ: \(D = ( - \infty ; - \sqrt 6 ) \cup (\sqrt 6 ; + \infty )\)

\(\eqalign{
& y' = \frac{{\left( {{x^3}} \right)'\sqrt {{x^2} - 6}  + {x^3}\left( {\sqrt {{x^2} - 6} } \right)'}}{{{{\left( {\sqrt {{x^2} - 6} } \right)}^2}}}\cr &= {{3{x^2}\sqrt {{x^2} - 6} - {{{x^4}} \over {\sqrt {{x^2} - 6} }}} \over {{x^2} - 6}} \cr 
& = {{3{x^2}({x^2} - 6) - {x^4}} \over {\sqrt {{{({x^2} - 6)}^3}} }} \cr 
& = \frac{{3{x^4} - 18{x^2} - {x^4}}}{{\sqrt {{{\left( {{x^2} - 6} \right)}^3}} }} = \frac{{2{x^4} - 18{x^2}}}{{\sqrt {{{\left( {{x^2} - 6} \right)}^3}} }}\cr &= {{2{x^2}({x^2} - 9)} \over {\sqrt {{{({x^2} - 6)}^3}} }} \cr} \)

\(y' = 0\)\(\Leftrightarrow 2{x^2}\left( {{x^2} - 9} \right) = 0 \)

\(\Leftrightarrow \left[ \begin{array}{l}
x^2 = 0\\
{x^2} - 9 = 0
\end{array} \right. \) \(\Leftrightarrow \left[ \begin{array}{l}
x = 0 \notin D\\
x = \pm 3 \in D
\end{array} \right.\)

Bảng biến thiên:

Từ đó ta thấy hàm số đạt cực đại tại \(x = -3\), đạt cực tiểu tại \(x =3\) và \({y_{CT}} = y(3) = 9\sqrt 3 ;\) \({y_{CD}} = y( - 3) =  - 9\sqrt 3 \)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 2: Cực trị của hàm số

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài