Bài 1.18 trang 15 SBT giải tích 12


Giải bài 1.18 trang 15 sách bài tập giải tích 12. Tìm cực trị của các hàm số sau:...

Lựa chọn câu để xem lời giải nhanh hơn

Tìm cực trị của các hàm số sau:

LG a

\(\displaystyle y = {{x + 1} \over {{x^2} + 8}}\)

Lời giải chi tiết:

TXĐ : R

\(y' = \frac{{\left( {x + 1} \right)'\left( {{x^2} + 8} \right) - \left( {x + 1} \right)\left( {{x^2} + 8} \right)'}}{{{{\left( {{x^2} + 8} \right)}^2}}}\) \(= {{{x^2} + 8 - 2x(x + 1)} \over {{{({x^2} + 8)}^2}}} = {{ - {x^2} - 2x + 8} \over {{{({x^2} + 8)}^2}}}\)

\(y' = 0  \Leftrightarrow  - {x^2} - 2x + 8 = 0\) \(\Leftrightarrow \left[ \matrix{
x = - 4 \hfill \cr 
x = 2 \hfill \cr} \right.\)

Bảng biến thiên:

Hàm số đạt cực đại tại \(x = 2\), cực tiểu tại \(x = - 4\) và \({y_{CD}} = y(2) = {1 \over 4};{y_{CT}} = y( - 4) =  - {1 \over 8}\)

LG câu b

\(\displaystyle y = {{{x^2} - 2x + 3} \over {x - 1}}\)

Lời giải chi tiết:

TXĐ: \(D = R\backslash \left\{ 1 \right\}\)

\(y' = \frac{{\left( {{x^2} - 2x + 3} \right)'\left( {x - 1} \right) - \left( {{x^2} - 2x + 3} \right)\left( {x - 1} \right)'}}{{{{\left( {x - 1} \right)}^2}}} \) \(= \frac{{\left( {2x - 2} \right)\left( {x - 1} \right) - \left( {{x^2} - 2x + 3} \right)}}{{{{\left( {x - 1} \right)}^2}}}\) \( = \frac{{2{x^2} - 4x + 2 - {x^2} + 2x - 3}}{{{{\left( {x - 1} \right)}^2}}}\) \( = {{{x^2} - 2x - 1} \over {{{(x - 1)}^2}}}\)

\(y' = 0  \Leftrightarrow {x^2} - 2x - 1 = 0\) \(\Leftrightarrow \left[ \matrix{
x = 1 - \sqrt 2 \hfill \cr 
x = 1 + \sqrt 2 \hfill \cr} \right.\)

Bảng biến thiên:

Hàm số đạt cực đại tại \(x = 1 - \sqrt 2 \) và đạt cực tiểu tại \(x = 1 + \sqrt 2\) , ta có:

\({y_{CD}} = y(1 - \sqrt 2 ) =  - 2\sqrt 2 ;\) \({y_{CT}} = y(1 + \sqrt 2 ) = 2\sqrt 2 \).

LG c

\(\displaystyle y = {{{x^2} + x - 5} \over {x + 1}}\)

Lời giải chi tiết:

TXĐ: R\{-1}

\(y' = \frac{{\left( {{x^2} + x - 5} \right)'\left( {x + 1} \right) - \left( {{x^2} + x - 5} \right)\left( {x + 1} \right)'}}{{{{\left( {x + 1} \right)}^2}}} \) \(= \frac{{\left( {2x + 1} \right)\left( {x + 1} \right) - \left( {{x^2} + x - 5} \right)}}{{{{\left( {x + 1} \right)}^2}}} \) \( = \frac{{2{x^2} + 3x + 1 - {x^2} - x + 5}}{{{{\left( {x + 1} \right)}^2}}}\) \(= {{{x^2} + 2x + 6} \over {{{(x + 1)}^2}}} > 0,\forall x \ne  - 1\)

(vì \(\left\{ \begin{array}{l}
{x^2} + 2x + 6 = {\left( {x + 1} \right)^2} + 5 > 0\\
{\left( {x + 1} \right)^2} > 0,\forall x \ne - 1
\end{array} \right.\))

Hàm số đồng biến trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { -1;+ \infty } \right)\) do đó không có cực trị.

LG d

\(\displaystyle y = {{{{(x - 4)}^2}} \over {{x^2} - 2x + 5}}\)

Lời giải chi tiết:

\(y = {{{{(x - 4)}^2}} \over {{x^2} - 2x + 5}}\)

Vì \({x^2}-2x + 5>0,\forall x\in R\) nên hàm số xác định trên \(R\).

\(y' = \frac{{\left[ {{{\left( {x - 4} \right)}^2}} \right]'\left( {{x^2} - 2x + 5} \right) - {{\left( {x - 4} \right)}^2}\left( {{x^2} - 2x + 5} \right)'}}{{{{\left( {{x^2} - 2x + 5} \right)}^2}}}\) \(= {{2(x - 4)({x^2} - 2x + 5) - {{(x - 4)}^2}(2x - 2)} \over {{{({x^2} - 2x + 5)}^2}}} \) \( = \frac{{2\left( {x - 4} \right)\left( {{x^2} - 2x + 5} \right) - 2{{\left( {x - 4} \right)}^2}\left( {x - 1} \right)}}{{{{\left( {{x^2} - 2x + 5} \right)}^2}}}  \) \(= \frac{{2\left( {x - 4} \right)\left[ {{x^2} - 2x + 5 - \left( {x - 4} \right)\left( {x - 1} \right)} \right]}}{{{{\left( {{x^2} - 2x + 5} \right)}^2}}}  \) \( = \frac{{2\left( {x - 4} \right)\left( {{x^2} - 2x + 5 - {x^2} + 5x - 4} \right)}}{{{{\left( {{x^2} - 2x + 5} \right)}^2}}}\) \(= {{2(x - 4)(3x + 1)} \over {{{({x^2} - 2x + 5)}^2}}}\)

\(y' = 0 \)

\(\Leftrightarrow 2\left( {x - 4} \right)\left( {3x + 1} \right) = 0\) \( \Leftrightarrow \left[ \begin{array}{l}
3x + 1 = 0\\
x - 4 = 0
\end{array} \right.\)

\(\Leftrightarrow \left[ \matrix{
x = - {1 \over 3} \hfill \cr 
x = 4 \hfill \cr} \right.\)

Bảng biến thiên:

Hàm số đạt cực đại tại \(x =  - {1 \over 3}\) , đạt cực tiểu tại \(x = 4\) và \({y_{CD}} = y( - {1 \over 3}) = {{13} \over 4};{y_{CT}} = y(4) = 0\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 2: Cực trị của hàm số

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài