Bài 10 trang 117 Vở bài tập toán 9 tập 1


Giải bài 10 trang 117 VBT toán 9 tập 1. Cho đường tròn (O) có các dây AB và CD bằng nhau, các tia AB và CD cắt nhau tại điểm E ...

Đề bài

Cho đường tròn (O) có các dây AB và CD bằng nhau, các tia AB và CD cắt nhau tại điểm E nằm bên ngoài đường tròn. Gọi H và K theo thứ tự là trung điểm của AB và CD. Chứng minh rằng:

a) EH = EK

b) EA = EC.

Phương pháp giải - Xem chi tiết

a) Dùng phương pháp hai tam giác bằng nhau.

b) Chứng minh \(HA = KC\) và kết hợp với câu a.

Lời giải chi tiết

a) Ta có \(HA = HB,KC = KD\) nên \(OH \bot AB,OK \bot CD.\)

Ta có \(AB = CD\left( {gt} \right)\) nên \(OH = OK\) (vì hai dây bằng nhau thì cách đều tâm).

Các tam giác vuông \(OEH\) và \(OEK\) có \(\widehat H = \widehat K = {90^o},OE\) là cạnh chung, \(OH = OK\) (chứng minh trên).

Do đó, \(\Delta OEH = \Delta OEK\) (trường hợp cạnh huyền – cạnh góc vuông ). Suy ra

\(EH = EK{\rm{                  }}\left( 1 \right)\)

b) Ta có \(HA = \dfrac{{AB}}{2},KC = \dfrac{{CD}}{2},\) mà \(AB = CD\) nên

\(HA = HC{\rm{                    }}\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \(EH + HA = EK + KC\) tức là \(EA = EC.\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài