Trả lời câu hỏi 3 trang 62 SGK Giải tích 12


Đề bài

Hãy chứng minh các tính chất:

\(\begin{array}{l}
{\log _a}1 = 0,\,\,{\log _a}a = 1\\
{a^{{{\log }_a}b}} = b,\,\,\,{\log _a}\left( {{a^\alpha }} \right) = \alpha
\end{array}\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Sử dụng định nghĩa \(\alpha  = {\log _a}b \Leftrightarrow b = {a^\alpha }\)

Lời giải chi tiết

Ta có:

\({a^0} = 1 \Rightarrow 0= {\log _a}1 \).

\({a^1} = a \Rightarrow 1 = {\log _a}a\).

Đặt \(b = {a^\alpha } \Rightarrow \alpha  = {\log _a}b = {\log _a}\left( {{a^\alpha }} \right)\)


Bình chọn:
3.6 trên 8 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2023 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.