Bài 5 trang 68 SGK Giải tích 12

Bình chọn:
3.1 trên 11 phiếu

Giải bài 5 trang 68 SGK Giải tích 12. Tính các câu sau:

Đề bài

a) Cho \(a = lo{g_{30}}3,b = lo{g_{30}}5\). Hãy tính \(lo{g_{30}}1350\) theo \(a, b\).

b) Cho \(c =lo{g_{15}}3\). Hãy tính \(lo{g_{25}}15\) theo \(c\).

Phương pháp giải - Xem chi tiết

+) Biến đổi các biểu thức logarit cần tính thông qua các logarit đề bài đã cho nhờ các công thức biến đổi cơ bản của logarit.

+) Thế các giá trị a, b vào biểu thức vừa biến đổi được ta tính được giá trị của biểu thức logarit cần tính.

Lời giải chi tiết

a) Ta có \(1350 = 30.3^2 .5\) suy ra

\(lo{g_{30}}1350 =lo{g_{30}}(30.{3^2}.5) \\= log_{30}30 + log_{30}3^2+log_{30}5\\ =1 + 2lo{g_{30}}3 + lo{g_{30}}5 = 1 + 2a+b.\)

b) Ta có: \(lo{g_{25}}15  = \frac{1}{log_{15}25}=\frac{1}{log_{15}5^2} \\= \frac{1}{2log_{15}5}= \frac{1}{2log_{15}\left ( 15: 3 \right )} = \frac{1}{2\left (log_{15}15-log_{15}3 \right )} \\ = \frac{1}{2\left (1-log_{15}3 \right )} = \frac{1}{2\left (1-c \right )}\).

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

Các bài liên quan: - Bài 3. Lôgarit

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu