
Video hướng dẫn giải
LG a
a) Tính \({\log _{\frac{1}{2}}}4,{\log _3}\dfrac{1}{{27}}\)
Phương pháp giải:
Tìm một số thực \(x\) thỏa mãn \({\left( {\dfrac{1}{2}} \right)^x} = 4\).
Tìm một số thực thỏa mãn \({3^x} = \dfrac{1}{{27}}\)
Lời giải chi tiết:
\({\log _{\frac{1}{2}}}4 = - 2\) vì \({\left( {\dfrac{1}{2}} \right)^{ - 2}} = \dfrac{1}{{{2^{ - 2}}}} = 4\)
\({\log _3}\dfrac{1}{{27}} = - 3\) vì \({3^{ - 3}} = \dfrac{1}{{{3^3}}} = \dfrac{1}{{27}}\)
LG b
b) Có các số \(x,y\) nào để \({3^x} = 0,{2^{y\;}} = - 3\) hay không?
Phương pháp giải:
Nhận xét giá trị của \(3^x\) và \(2^y\) suy ra kết luận.
Lời giải chi tiết:
Không có số \(x,y\) nào để \({3^x} = 0;{2^{y\;}} = - 3\) vì \({3^x}\; > 0;{2^y}\; > 0\) với mọi \(x,y\).
Loigiaihay.com
Tính và so sánh kết quả...
Tính...
Tính...
Tính...
Tìm một hệ thức liên hệ giữa ba kết quả thu được...
Không sử dụng máy tính, hãy tính:
Tính:
Rút gọn biểu thức:
So sánh các cặp số sau:
Tính các câu sau:
Hãy chứng minh các tính chất trên...
Tìm x để:...
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: