Câu hỏi 2 trang 62 SGK Giải tích 12


Giải câu hỏi 2 trang 62 SGK Giải tích 12. Tính...

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

LG a

a) Tính \({\log _{\frac{1}{2}}}4,{\log _3}\dfrac{1}{{27}}\)

Phương pháp giải:

Tìm một số thực \(x\) thỏa mãn \({\left( {\dfrac{1}{2}} \right)^x} = 4\).

Tìm một số thực thỏa mãn \({3^x} = \dfrac{1}{{27}}\)

Lời giải chi tiết:

\({\log _{\frac{1}{2}}}4 =  - 2\) vì \({\left( {\dfrac{1}{2}} \right)^{ - 2}} = \dfrac{1}{{{2^{ - 2}}}} = 4\)

\({\log _3}\dfrac{1}{{27}} =  - 3\) vì \({3^{ - 3}} = \dfrac{1}{{{3^3}}} = \dfrac{1}{{27}}\)

LG b

b) Có các số \(x,y\) nào để \({3^x} = 0,{2^{y\;}} =  - 3\) hay không?

Phương pháp giải:

Nhận xét giá trị của \(3^x\) và \(0,2^y\) suy ra kết luận.

Lời giải chi tiết:

Không có số \(x,y\) nào để \({3^x} = 0,{2^{y\;}} =  - 3\) vì \({3^x}\; > 0;{2^y}\; > 0\) với mọi \(x,y\).

Loigiaihay.com


Bình chọn:
3.3 trên 6 phiếu

Các bài liên quan: - Bài 3. Lôgarit

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài