Câu hỏi 3 trang 106 SGK Giải tích 12


Giải câu hỏi 3 trang 106 SGK Giải tích 12. Hãy chứng minh các tính chất 1 và 2...

Đề bài

Hãy chứng minh các tính chất 1 và 2.

Video hướng dẫn giải

Lời giải chi tiết

Tính chất 1:

+) Nếu \(k = 0\) thì tính chất đúng.

+) Nếu \(k \ne 0\) thì \(\int {kf\left( x \right)dx}  = k\int {f\left( x \right)dx}  = F\left( x \right)\) \( \Rightarrow \int {f\left( x \right)dx}  = \dfrac{{F\left( x \right)}}{k}\)

Do đó \(\int\limits_a^b {kf\left( x \right)dx}  = \left. {F\left( x \right)} \right|_a^b = F\left( b \right) - F\left( a \right)\) và \(k\int\limits_a^b {f\left( x \right)dx}  = k.\left. {\dfrac{{F\left( x \right)}}{k}} \right|_a^b\) \( = F\left( b \right) - F\left( a \right)\)

Từ đó suy ra \(\int\limits_a^b {kf\left( x \right)dx}  = k\int\limits_a^b {f\left( x \right)dx} \).

Tính chất 2:

Giả sử \(F\left( x \right),G\left( x \right)\) lần lượt là các nguyên hàm của hai hàm số \(f\left( x \right),g\left( x \right)\).

Ta có: \(\int {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx}  = \int {f\left( x \right)dx}  \pm \int {g\left( x \right)dx} \) \( = F\left( x \right) \pm G\left( x \right)\)

Khi đó \(\int\limits_a^b {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx}  = \left. {\left[ {F\left( x \right) \pm G\left( x \right)} \right]} \right|_a^b\) \( = \left[ {F\left( b \right) \pm G\left( b \right)} \right] - \left[ {F\left( a \right) \pm G\left( a \right)} \right]\) \( = \left[ {F\left( b \right) - F\left( a \right)} \right] \pm \left[ {G\left( b \right) - G\left( a \right)} \right]\).

Lại có \(\int\limits_a^b {f\left( x \right)dx}  \pm \int\limits_a^b {g\left( x \right)dx} \) \( = \left. {F\left( x \right)} \right|_a^b \pm \left. {G\left( x \right)} \right|_a^b\) \( = \left[ {F\left( b \right) - F\left( a \right)} \right] \pm \left[ {G\left( b \right) - G\left( a \right)} \right]\).

Từ đó ta có điều phải chứng minh.

Loigiaihay.com

 

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 2. Tích phân

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài