Bài 5 trang 113 SGK Giải tích 12


Giải bài 5 trang 113 SGK Giải tích 12. Tính các tích phân.

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Tính các tích phân sau:

LG a

\(\int_{0}^{1}(1+3x)^{\frac{3}{2}}dx\);        

Phương pháp giải:

\(\int\limits_{}^{} {{{\left( {ax + b} \right)}^n}}  = \dfrac{1}{a}\dfrac{{{{\left( {ax + b} \right)}^{n + 1}}}}{{n + 1}} + C\).

Lời giải chi tiết:

\(\begin{array}{l}\,\,\int\limits_0^1 {{{\left( {1 + 3x} \right)}^{\frac{3}{2}}}dx} = \left. {\dfrac{1}{3}.\dfrac{{{{\left( {1 + 3x} \right)}^{\frac{3}{2} + 1}}}}{{\frac{3}{2} + 1}}} \right|_0^1\\= \left. {\dfrac{2}{{15}}.{{\left( {1 + 3x} \right)}^{\frac{5}{2}}}} \right|_0^1 = \dfrac{2}{{15}}\left( {{4^{\frac{5}{2}}} - 1} \right) = \dfrac{2}{{15}}.31 = \dfrac{{62}}{{15}}\end{array}\)

LG b

\(\int_{0}^{\frac{1}{2}}\dfrac{x^{3}-1}{x^{2}-1}dx\)

Phương pháp giải:

+) Sử dụng hằng đẳng thức để rút gọn phân thức trong dấu tích phân.

+) Chia tử số cho mẫu số.

Lời giải chi tiết:

\(\begin{array}{l}\,\,\,\int\limits_0^{\frac{1}{2}} {\dfrac{{{x^3} - 1}}{{{x^2} - 1}}dx} = \int\limits_0^{\frac{1}{2}} {\dfrac{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}dx} \\= \int\limits_0^{\frac{1}{2}} {\dfrac{{{x^2} + x + 1}}{{x + 1}}dx} = \int\limits_0^{\frac{1}{2}} {\dfrac{{x\left( {x + 1} \right) + 1}}{{x + 1}}dx} \\= \int\limits_0^{\frac{1}{2}} {\left( {x + \dfrac{1}{{x + 1}}} \right)dx} = \left. {\left( {\dfrac{{{x^2}}}{2} + \ln \left| {x + 1} \right|} \right)} \right|_0^{\frac{1}{2}}\\= \dfrac{1}{8} + \ln \dfrac{3}{2}\end{array}\)

LG c

\(\int_{1}^{2}\dfrac{\ln(1+x)}{x^{2}}dx\)

Phương pháp giải:

Sử dụng phương pháp tích phân từng phần, đặt \(\left\{ \begin{array}{l}u = \ln \left( {1 + x} \right)\\dv = \dfrac{1}{{{x^2}}}dx\end{array} \right.\)

Lời giải chi tiết:

c) Đặt  \(\left\{ \begin{array}{l}u = \ln \left( {1 + x} \right)\\dv = \dfrac{1}{{{x^2}}}dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \dfrac{1}{{1 + x}}dx\\v = - \dfrac{1}{x}\end{array} \right.\)

\(\begin{array}{l}\Rightarrow \int\limits_1^2 {\dfrac{{\ln \left( {1 + x} \right)}}{{{x^2}}}dx} = \left. { - \dfrac{1}{x}\ln \left( {1 + x} \right)} \right|_1^2 + \int\limits_1^2 {\dfrac{{dx}}{{x\left( {1 + x} \right)}}} \\= - \dfrac{1}{2}\ln 3 + \ln 2 + \int\limits_1^2 {\left( {\dfrac{1}{x} - \dfrac{1}{{1 + x}}} \right)dx} \\= - \dfrac{1}{2}\ln 3 + \ln 2 + \left. {\ln \left| {\dfrac{x}{{1 + x}}} \right|} \right|_1^2\\= - \dfrac{1}{2}\ln 3 + \ln 2 + \ln \dfrac{2}{3} - \ln \dfrac{1}{2}\\= \ln \dfrac{1}{{\sqrt 3 }} + \ln 2 + \ln \dfrac{2}{3} - \ln \dfrac{1}{2} \end{array}\)

\(\begin{array}{l}
= - \dfrac{1}{2}\ln 3 + \ln 2 + \ln 2 - \ln 3 + \ln 2\\
= 3\ln 2 - \dfrac{3}{2}\ln 3
\end{array}\)

Loigiaihay.com

Bình chọn:
3.7 trên 19 phiếu

Các bài liên quan: - Bài 2. Tích phân

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài