Bài 1 trang 112 SGK Giải tích 12

Bình chọn:
4.6 trên 28 phiếu

Giải bài 1 trang 112 SGK Giải tích 12. Tính các tích phân sau:

Đề bài

Tính các tích phân sau:

a)\(\int_{\frac{-1}{2}}^{\frac{1}{2}}\sqrt[3]{ (1-x)^{2}}dx\)              b) \(\int_{0}^{\frac{\pi}{2}}sin(\frac{\pi}{4}-x)dx\)

c)\(\int_{\frac{1}{2}}^{2}\frac{1}{x(x+1)}dx\)                        d) \(\int_{0}^{2}x(x+1)^{2}dx\)

e)\(\int_{\frac{1}{2}}^{2}\frac{1-3x}{(x+1)^{2}}dx\)                        g) \(\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}sin3xcos5xdx\)

Phương pháp giải - Xem chi tiết

a) Sử dụng công thức nguyên hàm mở rộng \(\int\limits_{}^{} {{{\left( {ax + b} \right)}^n}dx}  = \frac{1}{a}\frac{{{{\left( {ax + b} \right)}^{n + 1}}}}{{n + 1}} + C\)

b) Sử dụng công thức nguyên hàm mở rộng: \(\int\limits_{}^{} {\sin \left( {ax + b} \right)dx}  =  - \frac{1}{a}\cos \left( {ax + b} \right) + C\).

c) Sử dụng phân tích: \(\frac{1}{{x\left( {x + 1} \right)}} = \frac{1}{x} - \frac{1}{{x + 1}}\) sau đó sử dụng công thức tính nguyên hàm mở rộng: \(\int\limits_{}^{} {\frac{1}{{ax + b}}dx}  = \frac{1}{a}.\ln \left| {ax + b} \right| + C\).

d) Nhân đa thức và áp dụng công thức nguyên hàm: \(\int\limits_{}^{} {{x^n}dx}  = \frac{{{x^{n + 1}}}}{{n + 1}} + C\).

e) Phân tích đa thức trong tích phân dưới dạng : \(\frac{{1 - 3x}}{{{{\left( {x + 1} \right)}^2}}} = \frac{A}{{x + 1}} + \frac{B}{{{{\left( {x + 1} \right)}^2}}}\) và sử dụng các công thức nguyên hàm: \(\int\limits_{}^{} {\frac{{dx}}{{ax + b}}}  = \frac{1}{a}\ln \left| {ax + b} \right| + C;\,\,\int\limits_{}^{} {\frac{{dx}}{{{{\left( {ax + b} \right)}^2}}}}  = \frac{1}{a}\frac{{ - 1}}{{ax + b}} + C\)

g) Cách 1:

Chứng minh hàm số \(f\left( x \right) = \sin 3x\cos 5x\) là hàm số lẻ và áp dụng công thức \(\int\limits_{ - a}^a {f\left( x \right)dx}  = 0\) (Với f(x) là hàm số lẻ, \(a \in R\).

Cách 2:

Sử dụng công thức biến đổi tích thành tổng.

Lời giải chi tiết

\(\begin{array}{l}a) \,\,\,\int\limits_{ - \frac{1}{2}}^{\frac{1}{2}} {\sqrt[3]{{{{\left( {1 - x} \right)}^2}}}dx} = \int\limits_{ - \frac{1}{2}}^{\,\frac{1}{2}} {{{\left( {1 - x} \right)}^{\frac{2}{3}}}dx} \\= \left. { - 1.\frac{{{{\left( {1 - x} \right)}^{\frac{5}{3}}}}}{{\frac{5}{3}}}} \right|_{ - \frac{1}{2}}^{\frac{1}{2}} = - \frac{3}{5}.\left[ {{{\left( {\frac{1}{2}} \right)}^{\frac{5}{3}}} - {{\left( {\frac{3}{2}} \right)}^{\frac{5}{3}}}} \right]\\= - \frac{3}{5}\left[ {\frac{1}{{\sqrt[3]{{{2^5}}}}} - \frac{{\sqrt[3]{{{3^5}}}}}{{\sqrt[3]{{{2^5}}}}}} \right] = - \frac{3}{5}\left[ {\frac{1}{{\sqrt[3]{{{2^3}{{.2}^2}}}}} - \frac{{\sqrt[3]{{{3^3}{{.3}^2}}}}}{{\sqrt[3]{{{2^3}{{.2}^2}}}}}} \right]\\= - \frac{3}{5}\left[ {\frac{1}{{2\sqrt[3]{4}}} - \frac{{3\sqrt[3]{9}}}{{2\sqrt[3]{4}}}} \right] = \frac{3}{{10\sqrt[3]{4}}}\left( {3\sqrt[3]{9} - 1} \right)\end{array}\)

\(b)\,\,\int\limits_0^{\frac{\pi }{2}} {\sin \left( {\frac{\pi }{4} - x} \right)dx}  = \left. {\cos \left( {\frac{\pi }{4} - x} \right)} \right|_0^{\frac{\pi }{2}} = \cos \left( { - \frac{\pi }{4}} \right) - \cos \frac{\pi }{4} = 0\)

c) Ta có: \(\frac{1}{{x\left( {x + 1} \right)}} = \frac{1}{x} - \frac{1}{{x + 1}}\)

\(\begin{array}{l}\Rightarrow \int\limits_{\frac{1}{2}}^2 {\frac{1}{{x\left( {x + 1} \right)}}dx} = \int\limits_{\frac{1}{2}}^2 {\left( {\frac{1}{x} - \frac{1}{{x + 1}}} \right)dx} \\= \left. {\left( {\ln \left| x \right| - \ln \left| {x + 1} \right|} \right)} \right|_{\frac{1}{2}}^2 = \left. {\ln \left| {\frac{x}{{x + 1}}} \right|} \right|_{\frac{1}{2}}^2\\= \ln \frac{2}{3} - \ln \frac{1}{3} = \ln \left( {\frac{2}{3}:\frac{1}{3}} \right) = \ln 2\end{array}\).

\(\begin{array}{l}d)\,\,x{\left( {x + 1} \right)^2} = x\left( {{x^2} + 2x + 1} \right) = {x^3} + 2{x^2} + x\\\Rightarrow \int\limits_0^2 {x{{\left( {x + 1} \right)}^2}dx} = \int\limits_0^2 {\left( {{x^3} + 2{x^2} + x} \right)dx} \\= \left. {\left( {\frac{{{x^4}}}{4} + 2\frac{{{x^3}}}{3} + \frac{{{x^2}}}{2}} \right)} \right|_0^2 = \frac{{34}}{3}\end{array}\)

\(\begin{array}{l}e)\,\,\frac{{1 - 3x}}{{{{\left( {x + 1} \right)}^2}}} = \frac{{ - 3\left( {x + 1} \right) + 4}}{{{{\left( {x + 1} \right)}^2}}} = - \frac{3}{{x + 1}} + \frac{4}{{{{\left( {x + 1} \right)}^2}}}\\\Rightarrow \int\limits_{\frac{1}{2}}^2 {\frac{{1 - 3x}}{{{{\left( {x + 1} \right)}^2}}}dx} = \int\limits_{\frac{1}{2}}^2 {\left( { - \frac{3}{{x + 1}} + \frac{4}{{{{\left( {x + 1} \right)}^2}}}} \right)dx} \\= - 3\int\limits_{\frac{1}{2}}^2 {\frac{{dx}}{{x + 1}}} + 4\int\limits_{\frac{1}{2}}^2 {\frac{{dx}}{{{{\left( {x + 1} \right)}^2}}}} \\= - \left. {3\ln \left| {x + 1} \right|} \right|_{\frac{1}{2}}^2 - \left. {\frac{4}{{x + 1}}} \right|_{\frac{1}{2}}^2\\= - 3\left( {\ln 3 - \ln \frac{3}{2}} \right) - 4\left( {\frac{1}{3} - \frac{2}{3}} \right)\\= - 3\ln 2 + \frac{4}{3}\end{array}\)

g) Cách 1:

Đặt \(f(x) = sin3xcos5x\) ta có: \(f\left( { - x} \right) = \sin \left( { - 3x} \right)\cos \left( { - 5x} \right) =  - \sin 3x\cos 5x =  - f\left( x \right) \Rightarrow \) là hàm số lẻ, từ đó ta có: \(\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\sin 3x\cos 5xdx}  = 0\).

Cách 2:

\(\begin{array}{l}\sin 3x\cos 5x = \frac{1}{2}\left( {\sin 8x - \sin 2x} \right)\\\Rightarrow \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\sin 3x\cos 5xdx} = \frac{1}{2}\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left( {\sin 8x - \sin 2x} \right)dx} \\= \frac{1}{2}\left. {\left( { - \frac{{\cos 8x}}{8} + \frac{{\cos 2x}}{2}} \right)} \right|_{ - \frac{\pi }{2}}^{\frac{\pi }{2}}\\= \frac{1}{2}\left( { - \frac{5}{8} - \left( { - \frac{5}{8}} \right)} \right) = 0\end{array}\)

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu



Các bài liên quan