Bài 2 trang 112 SGK Giải tích 12

Bình chọn:
3.8 trên 19 phiếu

Giải bài 2 trang 112 SGK Giải tích 12.Tính các tích phân.

Đề bài

Tính các tích phân sau:

a) \(\int_0^2 {\left| {1 - x} \right|} dx\)                          b) \(\int_0^{{\pi  \over 2}} s i{n^2}xdx\)

c) \(\int_0^{ln2} {{{{e^{2x + 1}} + 1} \over {{e^x}}}} dx\)                       d) \(\int_0^\pi  s in2xco{s^2}xdx\)

Phương pháp giải - Xem chi tiết

a) Phá trị tuyệt đối.

b) Sử dụng công thức hạ bậc: \({\sin ^2}x = \frac{{1 - \cos 2x}}{2}\)

c) Chia tử cho mẫu và sử dụng công thức: \(\int\limits_{}^{} {{e^{ax + b}}dx}  = \frac{1}{a}{e^{ax + b}} + C\)

d) Sử dụng công thức hạ bậc: \({\cos ^2}x = \frac{{1 + \cos 2x}}{2}\).

Lời giải chi tiết

a) Ta có: \(\left| {1 - x} \right| = \left[ \begin{array}{l}1 - x\,\,khi\,\,x \le 1\\x - 1\,\,khi\,\,x > 1\end{array} \right.\)

\(\Rightarrow \int_0^2 {\left| {1 - x} \right|} dx = \int_0^1 {\left| {1 - x} \right|} dx + \int_1^2 {\left| {1 - x} \right|} dx\)

\(=   \int_0^1 {(1 - x)} dx + \int_1^2 {(x - 1)} dx\)

\( = \left. {\left( {x - \frac{{{x^2}}}{2}} \right)} \right|_0^1 + \left. {\left( {\frac{{{x^2}}}{2} - x} \right)} \right|_1^2 = \frac{1}{2} + \frac{1}{2} = 1\)

\(\begin{array}{l}b)\,\,\int\limits_0^{\frac{\pi }{2}} {{{\sin }^2}xdx} = \frac{1}{2}\int\limits_0^{\frac{\pi }{2}} {\left( {1 - \cos 2x} \right)dx} \\= \frac{1}{2}\left. {\left( {x - \frac{{\sin 2x}}{2}} \right)} \right|_0^{\frac{\pi }{2}}\\= \frac{1}{2}.\frac{\pi }{2} = \frac{\pi }{4}\end{array}\)

\(\begin{array}{l}c)\,\,\int\limits_0^{\ln 2} {\frac{{{e^{2x + 1}} + 1}}{{{e^x}}}dx} = \int\limits_0^{\ln 2} {\left( {{e^{2x + 1 - x}} + {e^{ - x}}} \right)dx} \\= \int\limits_0^{\ln 2} {\left( {{e^{x + 1}} + {e^{ - x}}} \right)dx} \\= \left. {\left( {{e^{x + 1}} - {e^{ - x}}} \right)} \right|_0^{\ln 2}\\= {e^{\ln 2 + 1}} - {e^{ - \ln 2}} - \left( {e - 1} \right)\\= {e^{\ln 2}}.e - \frac{1}{2} - e + 1\\= e + \frac{1}{2}\end{array}\)

\(\begin{array}{l}d)\,\,\sin 2x\cos 2x = \sin 2x\frac{{1 + \cos 2x}}{2}\\\,\,\, = \frac{1}{2}\sin 2x + \frac{1}{2}\sin 2x\cos 2x = \frac{1}{2}\sin 2x + \frac{1}{4}\sin 4x\\\Rightarrow \int\limits_0^\pi {\sin 2x\cos 2xdx} = \int\limits_0^\pi {\left( {\frac{1}{2}\sin 2x + \frac{1}{4}\sin 4x} \right)dx} \\= \left. {\left( { - \frac{1}{4}\cos 2x - \frac{1}{{16}}\cos 4x} \right)} \right|_0^\pi \\= - \frac{1}{4} - \frac{1}{{16}} - \left( { - \frac{1}{4} - \frac{1}{{16}}} \right) = 0\end{array}\).

loigiaihay.com

 

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu



Các bài liên quan