Bài 6 trang 113 SGK Giải tích 12

Bình chọn:
3.3 trên 10 phiếu

Giải bài 6 trang 113 SGK Giải tích 12. Tính tích phân bằng hai phương pháp

Đề bài

Tính tích phân \(\int_{0}^{1}x(1-x)^{5}dx\) bằng hai phương pháp:

a) Đổi biến số: \(u = 1 - x\);

b) Tính tích phân từng phần.

Phương pháp giải - Xem chi tiết

a) Đặt \(u = 1 - x\).

b) Đặt \(\left\{ \begin{array}{l}u = x\\dv = {\left( {1 - x} \right)^5}dx\end{array} \right.\)

Lời giải chi tiết

a) Đặt \(u = 1 - x \Rightarrow x = 1 - u \Rightarrow dx = - du\).

Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow u = 1\\x = 1 \Rightarrow u = 0\end{array} \right.\)

\(\begin{array}{l}\Rightarrow \int\limits_0^1 {x{{\left( {1 - x} \right)}^5}dx} = - \int\limits_1^0 {\left( {1 - u} \right){u^5}du} \\= \int\limits_0^1 {\left( {{u^5} - {u^6}} \right)du} = \left. {\left( {\dfrac{{{u^6}}}{6} - \dfrac{{{u^7}}}{7}} \right)} \right|_0^1 = \dfrac{1}{6} - \dfrac{1}{7} = \dfrac{1}{{42}}\end{array}\)

b) Đặt \(\left\{ \begin{array}{l}u = x\\dv = {\left( {1 - x} \right)^5}dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v = - \dfrac{{{{\left( {1 - x} \right)}^6}}}{6}\end{array} \right.\)

\(\begin{array}{l}\Rightarrow \int\limits_0^1 {x\left( {1 - {x^5}} \right)dx} = - x\left. {\dfrac{{{{\left( {1 - x} \right)}^6}}}{6}} \right|_0^1 + \dfrac{1}{6}\int\limits_0^1 {{{\left( {1 - x} \right)}^6}dx} \\= - \dfrac{1}{6}\left. {\dfrac{{{{\left( {1 - x} \right)}^7}}}{7}} \right|_0^1 = \dfrac{1}{{42}}
\end{array}\)

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

Các bài liên quan: - Bài 2. Tích phân

>>Học trực tuyến luyện thi THPTQG, Đại học 2020, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới nâng cao.