Bài 6 trang 113 SGK Giải tích 12


Giải bài 6 trang 113 SGK Giải tích 12. Tính tích phân bằng hai phương pháp

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Tính tích phân \(\int_{0}^{1}x(1-x)^{5}dx\) bằng hai phương pháp:

LG a

Đổi biến số: \(u = 1 - x\);

Phương pháp giải:

Đặt \(u = 1 - x\).

Lời giải chi tiết:

Đặt \(u = 1 - x \)

\(\Rightarrow x = 1 - u \Rightarrow dx = - du\).

Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow u = 1\\x = 1 \Rightarrow u = 0\end{array} \right.\)

\(\begin{array}{l}\Rightarrow \int\limits_0^1 {x{{\left( {1 - x} \right)}^5}dx} = - \int\limits_1^0 {\left( {1 - u} \right){u^5}du} \\= \int\limits_0^1 {\left( {{u^5} - {u^6}} \right)du} = \left. {\left( {\dfrac{{{u^6}}}{6} - \dfrac{{{u^7}}}{7}} \right)} \right|_0^1 \\= \dfrac{1}{6} - \dfrac{1}{7} = \dfrac{1}{{42}}\end{array}\)

LG b

Tính tích phân từng phần.

Phương pháp giải:

Đặt \(\left\{ \begin{array}{l}u = x\\dv = {\left( {1 - x} \right)^5}dx\end{array} \right.\)

Lời giải chi tiết:

Đặt \(\left\{ \begin{array}{l}u = x\\dv = {\left( {1 - x} \right)^5}dx\end{array} \right.\)\(\Rightarrow \left\{ \begin{array}{l}du = dx\\v = - \dfrac{{{{\left( {1 - x} \right)}^6}}}{6}\end{array} \right.\)

\(\begin{array}{l}\Rightarrow \int\limits_0^1 {x\left( {1 - {x^5}} \right)dx}\\ = - x\left. {\dfrac{{{{\left( {1 - x} \right)}^6}}}{6}} \right|_0^1 + \dfrac{1}{6}\int\limits_0^1 {{{\left( {1 - x} \right)}^6}dx} \\= - \dfrac{1}{6}\left. {\dfrac{{{{\left( {1 - x} \right)}^7}}}{7}} \right|_0^1 = \dfrac{1}{{42}}
\end{array}\)

Loigiaihay.com


Bình chọn:
3.4 trên 12 phiếu

Các bài liên quan: - Bài 2. Tích phân

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài