Câu 7 trang 212 SGK Giải tích 12 Nâng cao


Hãy tính:

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Chứng minh rằng nếu a và b là hai số dương thỏa mãn a2 + b2 = 7ab thì 

\({\log _7}{{a + b} \over 3} = {1 \over 2}(\log_7a + \log _7b)\)

Phương pháp giải:

Biến đổi tương đương đẳng thức càn CM đưa về đẳng thức luôn đúng.

Lời giải chi tiết:

Ta có:

\(\eqalign{
& {\log _7}{{a + b} \over 3} = {1 \over 2}(\log_7a + \log _7b) \cr 
& \Leftrightarrow 2\log _7{{a + b} \over 3} = {\log _7}(ab) \cr 
& \Leftrightarrow {({{a + b} \over 3})^2} = ab \cr 
& \Leftrightarrow {a^2} + 2ab + {b^2} = 9ab \cr &\Leftrightarrow {a^2} + {b^2} = 7ab\,\,(đpcm) \cr} \)

LG b

Biết a và b là hai số dương, a ≠ 1 sao cho \(\log _ab = \sqrt 3 \). Hãy tính \({\log _{a\sqrt b }}{{\root 3 \of a } \over {\sqrt {{b^3}} }}\)

Phương pháp giải:

Sử dụng các công thức:

\(\begin{array}{l}
{\log _b}c = \dfrac{{{{\log }_a}c}}{{{{\log }_a}b}}\\
{\log _a}\left( {bc} \right) = {\log _a}b + {\log _a}c
\end{array}\)

\(\begin{array}{l}
{\log _a}\dfrac{b}{c} = {\log _a}b - {\log _a}c\\
{\log _a}{b^n} = n{\log _a}b
\end{array}\)

Lời giải chi tiết:

Ta có:

\(\eqalign{
& {\log _{a\sqrt b }}{{\root 3 \of a } \over {\sqrt {{b^3}} }} \cr &= {{{{\log }_a}{{\root 3 \of a } \over {\sqrt {{b^3}} }}} \over {{{\log }_a}a\sqrt b }} = {{{{\log }_a}\root 3 \of a - {{\log }_a}\sqrt {{b^3}} } \over {{{\log }_a}a + {{\log }_a}\sqrt b }} \cr 
&  = \frac{{{{\log }_a}{a^{\frac{1}{3}}} - {{\log }_a}{b^{\frac{3}{2}}}}}{{1 + {{\log }_a}{b^{\frac{1}{2}}}}}\cr &= {{{1 \over 3} - {3 \over 2}{{\log }_a}b} \over {1 + {1 \over 2}{{\log }_a}b}} = {{{1 \over 3} - {3 \over 2}\sqrt 3 } \over {1 + {1 \over 2}\sqrt 3 }} \cr 
& = {{2 - 9\sqrt 3 } \over {6 + 3\sqrt 3 }} \cr} \)

 Loigiaihay.com


Bình chọn:
3.5 trên 6 phiếu

Các bài liên quan: - Câu hỏi và bài tập

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài