Câu 5 trang 212 SGK Giải tích 12 Nâng cao


Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số sau:

Đề bài

Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f(x) = {1 \over {\sqrt { - {x^2} + x + 6} }}\) trên đoạn \([0, 1]\)

Lời giải chi tiết

Ta có: \(f'\left( x \right) = \dfrac{{ - 2x + 1}}{{2\sqrt { - {x^2} + x + 6} }}\)

\(f'\left( x \right) = 0 \Leftrightarrow  - 2x + 1 = 0 \Leftrightarrow x = \dfrac{1}{2}\)

\(f\left( 0 \right) = \dfrac{{\sqrt 6 }}{6},f\left( {\dfrac{1}{2}} \right) = \dfrac{2}{5},\) \(f\left( 1 \right) = \dfrac{{\sqrt 6 }}{6}\)

Vậy \(\mathop {\min }\limits_{\left[ {0;1} \right]} f\left( x \right) = \dfrac{2}{5},\mathop {\max }\limits_{\left[ {0;1} \right]} f\left( x \right) = \dfrac{{\sqrt 6 }}{6}\)

Cách khác:

Xét hàm số g(x) = -x2 + x + 6 với x ∈ [0, 1]

Ta có:

\(\eqalign{
& g'(x) = - 2x + 1 \cr 
& g'(x) = 0 \Leftrightarrow x = {1 \over 2} \cr} \)

\(\eqalign{
& g(0) = 6;\,\,\,g({1 \over 2}) = {{25} \over 4};\,\,\,g(1) = 6 \cr 
& \mathop {\min }\limits_{x \in {\rm{[}}0,1{\rm{]}}} (x) = 6;\,\,\,\mathop {\max }\limits_{x \in {\rm{[}}0,1{\rm{]}}} (x) = {{25} \over 4} \cr} \)

\(\eqalign{
& \Rightarrow 6 \le g(x) \le {{25} \over 4}\,\,\,(\forall x \in {\rm{[}}0,1{\rm{]}}) \cr 
& \Rightarrow {2 \over 5} \le f(x) = {1 \over {\sqrt {g(x)} }} \le {{\sqrt 6 } \over 6} \cr} \)

Vậy \(\mathop {\max}\limits_{x \in [0,1{\rm{]}}} f(x) = {{\sqrt 6 } \over 6};\,\,\,\mathop {\min }\limits_{x \in [0,1{\rm{]}}} f(x) = {2 \over 5}\)

 Loigiaihay.com


Bình chọn:
3.4 trên 5 phiếu

Các bài liên quan: - Câu hỏi và bài tập

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài