Câu 2 trang 211 SGK Giải tích 12 Nâng cao


Gọi nghiệm thực duy nhất của hàm số là α. Chứng minh rằng 3,5 < α < 3,6

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Khảo sát sự biến thiên và vẽ đồ thị của hàm số f(x) = 2x3 – 3x2 – 12x – 10

Phương pháp giải:

- Tìm TXĐ.

- Tính đạo hàm, lập bảng biến thiên.

- Vẽ đồ thị.

Lời giải chi tiết:

TXD: \(D =\mathbb R\)

f ’(x) = 6(x2 – x – 2)

\(f'(x) = 0 \Leftrightarrow \left[ \matrix{
x = - 1 \hfill \cr 
x = 2 \hfill \cr} \right.\)

Hàm số đạt cực đại tại \(x=1;\;y_{CĐ}=-3\)

Hàm số đạt cực tiểu tại \(x=2;\;y_{CĐ}=-30\)

\(\mathop {\lim }\limits_{x \to  \pm \infty } f(x) =  \pm \infty \)

Ta có bảng biến thiên:

             

Đồ thị

LG b

Chứng minh rằng phương trình 2x3 – 3x2 – 12x – 10 = 0 có nghiệm thực duy nhất.

Phương pháp giải:

Sử dụng tương giao đồ thị, số nghiệm của phương trình bằng số giao điểm của đồ thị hàm số với trục hoành.

Lời giải chi tiết:

Đồ thị hàm số y = 2x3 – 3x2 – 12x – 10  cắt trục hoành tại một điểm duy nhất nên phương trình đã cho có nghiệm thực duy nhất.

LG c

Gọi nghiệm thực duy nhất của hàm số là \(α\). Chứng ming rằnh \(3,5 < α < 3,6\).

Phương pháp giải:

Sử dụng định lí: Hàm số f(x) liên tục trên (a;b) và f(a).f(b)<0 thì tồn tại ít nhất một điểm c trong (a;b) sao cho f(c)=0.

Lời giải chi tiết:

Ta có: \(f(3, 5).f(3, 6) < 0\) và hàm số liên tục trên (3,5;3,6).

Vì vậy, phương trình có nghiệm \(α\)  duy nhất thỏa mãn điều kiện \(3,5 < α < 3,6\).

Loigiaihay.com


Bình chọn:
4 trên 5 phiếu

Các bài liên quan: - Câu hỏi và bài tập

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài