Câu 20 trang 214 SGK Giải tích 12 Nâng cao


Xác định tập hợp các điểm m trên mặt phẳng phức biểu diễn các số phức

Đề bài

Xác định tập hợp các điểm M trên mặt phẳng phức biểu diễn các số phức \((1 + i\sqrt 3 )z + 2\)

Trong đó |z – 1 | ≤  2.

Phương pháp giải - Xem chi tiết

- Đặt \(z' = (1 + i\sqrt 3 )z + 2 \Rightarrow z = {{z' - 2} \over {1 + i\sqrt 3 }}\).

- Thay z vào điều kiện bài cho suy ra điều kiện của z', từ đó suy ra tập hợp điểm biểu diễn z'.

Lời giải chi tiết

Đặt \(z' = (1 + i\sqrt 3 )z + 2 \Rightarrow z = {{z' - 2} \over {1 + i\sqrt 3 }}\)

Ta có:

\(\eqalign{
& |z - 1|\,\, \le 2 \Leftrightarrow \,|{{z' - 2} \over {1 + i\sqrt 3 }} - 1|\,\, \le 2 \cr 
& \Leftrightarrow \,\,|z' - 2 - 1 - i\sqrt 3 |\,\, \le 2|1 + i\sqrt 3 | \cr 
& \Leftrightarrow \,\,|z' - (3 + i\sqrt 3 )|\,\, \le 4 \cr} \)

Tập hợp các điểm M là tập hợp các điểm thuộc đường tròn (kể cả biên) có tâm A biểu diễn số \(3 + i\sqrt 3 \) có bán kính bằng 4.

 Loigiaihay.com


Bình chọn:
3.4 trên 5 phiếu

Các bài liên quan: - Câu hỏi và bài tập

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài