Câu 11 trang 213 SGK Giải tích 12 Nâng cao


Tìm tập xác định của các hàm số sau

Lựa chọn câu để xem lời giải nhanh hơn

Tìm tập xác định của các hàm số sau

LG a

y = log[1 – log(x2 – 5x + 16)]

Phương pháp giải:

Hàm số \(y = {\log _a}f\left( x \right)\) xác định khi f(x)>0

Lời giải chi tiết:

HS xác định khi và khi chỉ khi:

\(\left\{ \begin{array}{l}
{x^2} - 5x + 16 > 0\left( {\forall x \in R} \right)\\
1 - \log \left( {{x^2} - 5x + 16} \right) > 0
\end{array} \right. \) \(\Leftrightarrow \log \left( {{x^2} - 5x + 16} \right) < 1 \) \(\Leftrightarrow {x^2} - 5x + 16 < 10 \) \(\Leftrightarrow {x^2} - 5x + 6 < 0 \) \( \Leftrightarrow 2 < x < 3\)

Vậy D = (2, 3)

LG b

\(y = \sqrt {{{\log }_{0,5}}( - {x^2} + x + 6)}  + {1 \over {{x^2} + 2x}}\)

Phương pháp giải:

Hàm số \(y = {\log _a}f\left( x \right)\) xác định khi f(x)>0

Lời giải chi tiết:

HS xác định khi và chỉ khi:

\(\left\{ \begin{array}{l}
- {x^2} + x + 6 > 0\\
{\log _{0,5}}\left( { - {x^2} + x + 6} \right) \ge 0\\
{x^2} + 2x \ne 0
\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}
- {x^2} + x + 6 > 0\\
- {x^2} + x + 6 \le 1\\
{x^2} + 2x \ne 0
\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}
- 2 < x < 3\\
- {x^2} + x + 5 \le 0\\
x \ne 0,x \ne - 2
\end{array} \right. \) \( \Leftrightarrow \left\{ \begin{array}{l}
- 2 < x < 3\\
\left[ \begin{array}{l}
x \le \frac{{1 - \sqrt {21} }}{2}\\
x \ge \frac{{1 + \sqrt {21} }}{2}
\end{array} \right.\\
x \ne 0,x \ne - 2
\end{array} \right. \) \(\Leftrightarrow \left[ \begin{array}{l}
- 2 < x \le \frac{{1 - \sqrt {21} }}{2}\\
\frac{{1 + \sqrt {21} }}{2} \le x < 3
\end{array} \right.\)

Vậy \(D = ( - 2;\,{{1 - \sqrt {21} } \over 2}{\rm{]}} \cup {\rm{[}}{{1 + \sqrt {21} } \over 2};\,3)\)

Loigiaihay.com


Bình chọn:
3.6 trên 5 phiếu

Các bài liên quan: - Câu hỏi và bài tập

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.


Hỏi bài