Câu 11 trang 213 SGK Giải tích 12 Nâng cao


Tìm tập xác định của các hàm số sau

Lựa chọn câu để xem lời giải nhanh hơn

Tìm tập xác định của các hàm số sau

LG a

y = log[1 – log(x2 – 5x + 16)]

Phương pháp giải:

Hàm số \(y = {\log _a}f\left( x \right)\) xác định khi f(x)>0

Lời giải chi tiết:

HS xác định khi và khi chỉ khi:

\(\left\{ \begin{array}{l}
{x^2} - 5x + 16 > 0\left( {\forall x \in R} \right)\\
1 - \log \left( {{x^2} - 5x + 16} \right) > 0
\end{array} \right. \) \(\Leftrightarrow \log \left( {{x^2} - 5x + 16} \right) < 1 \) \(\Leftrightarrow {x^2} - 5x + 16 < 10 \) \(\Leftrightarrow {x^2} - 5x + 6 < 0 \) \( \Leftrightarrow 2 < x < 3\)

Vậy D = (2, 3)

LG b

\(y = \sqrt {{{\log }_{0,5}}( - {x^2} + x + 6)}  + {1 \over {{x^2} + 2x}}\)

Phương pháp giải:

Hàm số \(y = {\log _a}f\left( x \right)\) xác định khi f(x)>0

Lời giải chi tiết:

HS xác định khi và chỉ khi:

\(\left\{ \begin{array}{l}
- {x^2} + x + 6 > 0\\
{\log _{0,5}}\left( { - {x^2} + x + 6} \right) \ge 0\\
{x^2} + 2x \ne 0
\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}
- {x^2} + x + 6 > 0\\
- {x^2} + x + 6 \le 1\\
{x^2} + 2x \ne 0
\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}
- 2 < x < 3\\
- {x^2} + x + 5 \le 0\\
x \ne 0,x \ne - 2
\end{array} \right. \) \( \Leftrightarrow \left\{ \begin{array}{l}
- 2 < x < 3\\
\left[ \begin{array}{l}
x \le \frac{{1 - \sqrt {21} }}{2}\\
x \ge \frac{{1 + \sqrt {21} }}{2}
\end{array} \right.\\
x \ne 0,x \ne - 2
\end{array} \right. \) \(\Leftrightarrow \left[ \begin{array}{l}
- 2 < x \le \frac{{1 - \sqrt {21} }}{2}\\
\frac{{1 + \sqrt {21} }}{2} \le x < 3
\end{array} \right.\)

Vậy \(D = ( - 2;\,{{1 - \sqrt {21} } \over 2}{\rm{]}} \cup {\rm{[}}{{1 + \sqrt {21} } \over 2};\,3)\)

Loigiaihay.com


Bình chọn:
3.6 trên 5 phiếu

Các bài liên quan: - Câu hỏi và bài tập

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài