Câu 21 trang 214 SGK Giải tích 12 Nâng cao


Tìm các căn bậc hai của các số phức

Đề bài

Tìm các căn bậc hai của các số phức:

-8 + 6i;  3 + 4i;  \(1 - 2\sqrt 2 i\)

Phương pháp giải - Xem chi tiết

Gọi x+yi là căn bậc hai của a+bi, ta có:

(x+yi)2=a+bi <=>(x2-y2 )+2xyi=a+bi.

Giải hệ phương trình trên tìm x, y và kết luận.

Lời giải chi tiết

* Gọi x+yi là căn bậc hai của -8+6i, ta có:

(x+yi)2=-8+6i <=>(x2-y2 )+2xyi=-8+6i

\( \Leftrightarrow \left\{ \matrix{
{x^2} - {y^2} = - 8 \hfill \cr 
2xy = 6 \hfill \cr} \right. \)

\( \Leftrightarrow \left\{ \begin{array}{l}
y = \frac{3}{x}\\
{x^2} - \frac{9}{{{x^2}}} = - 8
\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}
y = \frac{3}{x}\\
{x^4} + 8{x^2} - 9 = 0
\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}
y = \frac{3}{x}\\
\left[ \begin{array}{l}
{x^2} = 1\\
{x^2} = - 9\left( {loai} \right)
\end{array} \right.
\end{array} \right.\)

\(\Leftrightarrow \left[ \matrix{
\left\{ \matrix{
x = 1 \hfill \cr 
y = 3 \hfill \cr} \right. \hfill \cr 
\left\{ \matrix{
x = - 1 \hfill \cr 
y = - 3 \hfill \cr} \right. \hfill \cr} \right.\)

Hai căn bậc hai cần tìm là 1 + 3i và -1 – 3i

* Gọi x+yi là căn bậc hai của 3+4i, ta có:

(x+yi)2=3+4i <=>(x2-y2 )+2xyi=3+4i

\(\Leftrightarrow \left\{ \matrix{
{x^2} - {y^2} = 3 \hfill \cr 
2xy = 4 \hfill \cr} \right. \) \( \Leftrightarrow \left\{ \begin{array}{l}
y = \frac{2}{x}\\
{x^2} - \frac{4}{{{x^2}}} = 3
\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}
y = \frac{2}{x}\\
{x^4} - 3{x^2} - 4 = 0
\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}
y = \frac{2}{x}\\
\left[ \begin{array}{l}
{x^2} = 4\\
{x^2} = - 1\left( {loai} \right)
\end{array} \right.
\end{array} \right.\) \(\Leftrightarrow \left[ \matrix{
\left\{ \matrix{
x = 2 \hfill \cr 
y = 1 \hfill \cr} \right. \hfill \cr 
\left\{ \matrix{
x = - 2 \hfill \cr 
y = - 1 \hfill \cr} \right. \hfill \cr} \right.\)     

Hai căn bậc hai cần tìm là 2 + i; -2 – i

* Gọi x+yi là căn bậc hai của \(1 - 2\sqrt 2 i\), ta có:

(x+yi)2=\(1 - 2\sqrt 2 i\)

<=>(x2-y2 )+2xyi=\(1 - 2\sqrt 2 i\)

\(\Leftrightarrow \left\{ \matrix{
{x^2} - {y^2} = 1 \hfill \cr 
2xy = - 2\sqrt 2 \hfill \cr} \right. \)

\( \Leftrightarrow \left\{ \begin{array}{l}
y = - \frac{{\sqrt 2 }}{x}\\
{x^2} - \frac{2}{{{x^2}}} = 1
\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}
y = - \frac{{\sqrt 2 }}{x}\\
{x^4} - {x^2} - 2 = 0
\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}
y = - \frac{{\sqrt 2 }}{x}\\
\left[ \begin{array}{l}
{x^2} = 2\\
{x^2} = - 1\left( {loai} \right)
\end{array} \right.
\end{array} \right.\)

\(\Leftrightarrow \left[ \matrix{
\left\{ \matrix{
x = \sqrt 2 \hfill \cr 
y = - 1 \hfill \cr} \right. \hfill \cr 
\left\{ \matrix{
x = - \sqrt 2 \hfill \cr 
y = 1 \hfill \cr} \right. \hfill \cr} \right.\) 

Hai căn bậc hai cần tìm là:  \(\sqrt 2  - i;\,\, - \sqrt 2  + i\)

Loigiaihay.com


Bình chọn:
3 trên 4 phiếu

Các bài liên quan: - Câu hỏi và bài tập

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài