Câu 15 trang 213 SGK Giải tích 12 Nâng cao


Tính diện tích các hình phẳng giới hạn bởi các đường

Lựa chọn câu để xem lời giải nhanh hơn

Tính diện tích các hình phẳng giới hạn bởi các đường

LG a

y + x2 = 0 và y + 3x2 = 2

Lời giải chi tiết:

Phương trình hoành độ giao điểm của hai đường cong là:

-x2 = 2 – 3x2 ⇔ x = 1 ⇔ x = ± 1

Với \(- 1 \le x \le 1\) thì \(2{x^2} - 2 \le 0 \Rightarrow \left| {2{x^2} - 2} \right| = 2 - 2{x^2}\)

Diện tích cần tìm là:

\(\eqalign{
& S = \int\limits_{ - 1}^1 {| - {x^2} - (2 - 3{x^2})|dx = \int\limits_{ - 1}^1 {|2{x^2} - 2|dx} } \cr 
& = \int\limits_{ - 1}^1 {(2 - 2{x^2})dx = (2x - {2 \over 3}{x^3})|_{ - 1}^1} = {8 \over 3} \cr} \)

LG b

y2 – 4x = 4 và 4x – y = 16

Lời giải chi tiết:

Ta có:

\(\eqalign{
& {y^2} - 4x = 4 \Leftrightarrow x = {{{y^2} - 4} \over 4} \cr 
& 4x - y = 16 \Leftrightarrow x = {{y + 16} \over 4} \cr} \) 

Phương trình tung độ giao điểm của hai đường cong là:

\({y^2} - 4 = y + 16 \Leftrightarrow {y^2} - y - 20 = 0 \) \(\Leftrightarrow \left[ \matrix{
y = - 4 \hfill \cr 
y = 5 \hfill \cr} \right.\)

Với \(y \in \left( { - 4;5} \right) \Rightarrow {y^2} - y - 20 \le 0\) \( \Rightarrow \left| {{y^2} - y - 20} \right| =  - {y^2} + y + 20\)

Diện tích cần tìm là:

\(\eqalign{
& S = \int\limits_{ - 4}^5 {|{{{y^2} - 4} \over 4} - {{y + 16} \over 4}|dy} \cr 
& = {1 \over 4}\int\limits_{ - 4}^5 {|{y^2} - y - 20|dy = {1 \over 4}\int\limits_{ - 4}^5 {( - {y^2} + y + 20)dy} } \cr 
& = {1 \over 4}( - {{{y^3}} \over 3} + {{{y^2}} \over 2} + 20y)|_{ - 4}^5 = {{243} \over 8} \cr} \)

Loigiaihay.com


Bình chọn:
3.5 trên 6 phiếu

Các bài liên quan: - Câu hỏi và bài tập

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài