Câu 14 trang 213 SGK Giải tích 12 Nâng cao


Tính các tính phân sau

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Tính các tính phân sau

LG a

\(\int\limits_0^1 {{{dx} \over {{x^2} + 1}}} \)

Phương pháp giải:

Tính tích phân bằng phương pháp đổi biến \(x=\tan t\)

Lời giải chi tiết:

Đặt \(x = \tan t \Rightarrow dx = {1 \over {{{\cos }^2}t}}dt\) \( = \left( {1 + {{\tan }^2}t} \right)dt\)

Đổi cận:

\(\begin{array}{l}
x = 0 \Rightarrow t = 0\\
x = 1 \Rightarrow t = \dfrac{\pi }{4}
\end{array}\)

\(\int\limits_0^1 {{{dx} \over {{x^2} + 1}}}  = \int\limits_0^{{\pi  \over 4}} {{{(1+\tan ^2 t)dt} \over {{{\tan }^2}t + 1}}}  = \int\limits_0^{{\pi  \over 4}} {dt}  = {\pi  \over 4}\)

LG b

\(\int\limits_0^1 {{{dx} \over {{x^2} + x + 1}}} \)

Lời giải chi tiết:

Ta có:

\(I = \int\limits_0^1 {{{dx} \over {{x^2} + x + 1}}}  = \int\limits_0^1 {{{dx} \over {{{(x + {1 \over 2})}^2} + {{({{\sqrt 3 } \over 2})}^2}}}} \)

Đặt \(x + {1 \over 2} = {{\sqrt 3 } \over 2}\tan t \) \(\Rightarrow dx = {{\sqrt 3 } \over 2}(1 + {\tan ^2}t)dt\)

Đổi cận:

\(\begin{array}{l}
x = 0 \Rightarrow t = \frac{\pi }{6}\\
x = 1 \Rightarrow t = \frac{\pi }{3}
\end{array}\)

\(I  = \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\frac{{\frac{{\sqrt 3 }}{2}\left( {1 + {{\tan }^2}t} \right)dt}}{{\frac{3}{4}{{\tan }^2}t + \frac{3}{4}}}} \) \( = \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\frac{{\frac{{\sqrt 3 }}{2}\left( {1 + {{\tan }^2}t} \right)dt}}{{\frac{3}{4}\left( {{{\tan }^2}t + 1} \right)}}}\) \(  = \int\limits_{{\pi  \over 6}}^{{\pi  \over 3}} {{{{{\sqrt 3 } \over 2}dt} \over {{3 \over 4}}}}  = {4 \over 3}.{{\sqrt 3 } \over 2}.{\pi  \over 6} = {{\sqrt 3 \pi } \over 9}\) 

LG c

\(\int\limits_0^1 {{x^2}{e^x}dx} \)

Phương pháp giải:

Tính tích phân bằng phương pháp từng phần.

Lời giải chi tiết:

Đặt 

\(\left\{ \matrix{
u = {x^2} \hfill \cr 
dv = {e^x}dx \hfill \cr} \right. \Rightarrow \left\{ \matrix{
du = 2xdx \hfill \cr 
v = {e^x} \hfill \cr} \right.\)

Do đó: \(\int\limits_0^1 {{x^2}{e^x}dx}  \) \(= {x^2}{e^x}|_0^1 - 2\int\limits_0^1 {x{e^x}dx = e - 2\int\limits_0^1 {x{e^x}dx\,\,\,\,\,\,\,(*)} } \)

Đặt

\(\left\{ \matrix{
u = x \hfill \cr 
dv = {e^x}dx \hfill \cr} \right. \Rightarrow \left\{ \matrix{
du = dx \hfill \cr 
v = {e^x} \hfill \cr} \right.\)

Suy ra:

\(\int\limits_0^1 {x{e^x}dx = x{e^x}|_0^1}  - \int\limits_0^1 {{e^x}dx}  \) \(= e - {e^x}|_0^1=e-(e-1)= 1\) 

Từ (*) suy ra:  \(\int\limits_0^1 {{x^2}{e^x}dx}  = e - 2\)

 Loigiaihay.com


Bình chọn:
3.3 trên 3 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí