Câu 22 trang 214 SGK Giải tích 12 Nâng cao

Bình chọn:
3.5 trên 2 phiếu

Giải các phương trình sau trên C

Giải các phương trình sau trên C

a) z2 – 3z + 3 + i = 0

b) \({z^2} - (cos\varphi  + i\sin \varphi )z + i\sin \varphi \cos \varphi  = 0\)

trong đó \(\varphi\) là số thực cho trước

Giải

a) z2 – 3z + 3 + i = 0 có biệt thức là:

Δ = 32 – 4(3 + i) = -3 – 4i = (-1 + 2i )2

Nên nghiệm của nó là: 

\(\left\{ \matrix{
z_1={{3 + ( - 1 + 2i)} \over 2} = 1 + i \hfill \cr
z_2={{3 - ( - 1 + 2i)} \over 2} = 2 - i \hfill \cr} \right.\)

b) Ta có:

\(\eqalign{
& {z^2} - (cos\varphi + i\sin \varphi )z + i\sin \varphi \cos \varphi = 0 \cr
& \Leftrightarrow {z^2} - \cos \varphi .z - i\sin \varphi .z + isin\varphi cos\varphi = 0 \cr
& \Leftrightarrow z(z - cos\varphi ) - isin\varphi (z - cos\varphi ) = 0 \cr
& \Leftrightarrow (z - cos\varphi )(z - isin\varphi ) = 0 \cr
& \Leftrightarrow \left[ \matrix{
z = \cos \varphi \hfill \cr
z = i\sin \varphi \hfill \cr} \right. \cr} \) 

Vậy \(S = {\rm{\{ cos}}\varphi {\rm{;}}\,i\sin \varphi )\)

Loigiaihay.com

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu



Các bài liên quan