Câu 17 trang 213 SGK Giải tích 12 Nâng cao


Hãy tính và biểu diễn hình học các số phức

Đề bài

Cho các số phức z1 = 1 + i; z2 = 1 – 2i. Hãy tính và biểu diễn hình học các số phức: \(z_1^2;{z_1}{z_2};2{z_1} - {z_2}:{z_1}\overline {z_2};{{{z_2}} \over {\overline {z_1}}}\)

Lời giải chi tiết

z12 = (1 + i)2 \( = 1 + 2i + {i^2} = 1 + 2i - 1\) = 2i

z1z2 = (1 + i)(1 – 2i) \( = 1 + i - 2i - 2{i^2} = 1 - i + 2\) = 3 – i

2z1 – z2 = 2(1 + i) – (1 – 2i)

=2-2i-1+2i = 1 + 4i

\({z_1}\overline {{z_2}}  = (1 + i)(1 + 2i) \) \( = 1 + i + 2i + 2{i^2}\) \( = 1 + 3i - 2  =  - 1 + 3i\)

 \({{{z_2}} \over {\overline {z_1}}} = {{1 - 2i} \over {1 - i}} = {{(1 - 2i)(1 + i)} \over 2} \) \( = \frac{{1 - 2i + i - 2{i^2}}}{2} = \frac{{3 - i}}{2}= {3 \over 2} - {i \over 2}\)

 Loigiaihay.com


Bình chọn:
3.7 trên 3 phiếu

Các bài liên quan: - Câu hỏi và bài tập

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài