Câu 4.15 trang 136 sách bài tập Đại số và Giải tích 11 Nâng cao


Biểu diễn các số thập phân vô hạn tuần hoàn sau đây dưới dạng phân số:

Lựa chọn câu để xem lời giải nhanh hơn

Biểu diễn các số thập phân vô hạn tuần hoàn sau đây dưới dạng phân số:

 

LG a

0,222…    

Lời giải chi tiết:

 \({2 \over 9}\)  

 

LG b

0,393939…

Lời giải chi tiết:

\({{13} \over {33}}\)

 

LG c

0,27323232…

Lời giải chi tiết:

\(0,27323232 \ldots  = {{27} \over {100}} + {{32} \over {10000}}\)

\(+ {{32} \over {10000}}\left( {{1 \over {100}}} \right) + {{32} \over {10000}}{\left( {{1 \over {100}}} \right)^2} + ...\)

Dãy số

         \({{32} \over {10000}},{{32} \over {10000}}\left( {{1 \over {100}}} \right),{{32} \over {10000}}{\left( {{1 \over {100}}} \right)^2},...\)

Là một cấp số nhân lùi vô hạn có số hạng đầu \({u_1} = {{32} \over {10000}}\) và công bội \(q = {1 \over {100}}.\) Tổng của nó là \(S = {{{u_1}} \over {1 - q}}:\)

\({{32} \over {10000}} + {{32} \over {10000}}\left( {{1 \over {1000}}} \right) + {{32} \over {1000}}{\left( {{1 \over {100}}} \right)^2} + ...\)

\(= {{32} \over {10000}}{1 \over {1 - {1 \over {100}}}} = {{32} \over {9900}}\)

Do đó

           \(0,27323232 \ldots  = {{27} \over {100}} + {{32} \over {9900}} = {{541} \over {1980}}\)

Loigiaihay.com

 

Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí