Câu 4.15 trang 136 sách bài tập Đại số và Giải tích 11 Nâng cao


Biểu diễn các số thập phân vô hạn tuần hoàn sau đây dưới dạng phân số:

Lựa chọn câu để xem lời giải nhanh hơn

Biểu diễn các số thập phân vô hạn tuần hoàn sau đây dưới dạng phân số:

LG a

0,222…    

Giải chi tiết:

 \({2 \over 9}\)  

LG b

0,393939…

Giải chi tiết:

\({{13} \over {33}}\)

LG c

0,27323232…

Giải chi tiết:

\(0,27323232 \ldots  = {{27} \over {100}} + {{32} \over {10000}}\)

\(+ {{32} \over {10000}}\left( {{1 \over {100}}} \right) + {{32} \over {10000}}{\left( {{1 \over {100}}} \right)^2} + ...\)

Dãy số

         \({{32} \over {10000}},{{32} \over {10000}}\left( {{1 \over {100}}} \right),{{32} \over {10000}}{\left( {{1 \over {100}}} \right)^2},...\)

Là một cấp số nhân lùi vô hạn có số hạng đầu \({u_1} = {{32} \over {10000}}\) và công bội \(q = {1 \over {100}}.\) Tổng của nó là \(S = {{{u_1}} \over {1 - q}}:\)

\({{32} \over {10000}} + {{32} \over {10000}}\left( {{1 \over {1000}}} \right) + {{32} \over {1000}}{\left( {{1 \over {100}}} \right)^2} + ...\)

\(= {{32} \over {10000}}{1 \over {1 - {1 \over {100}}}} = {{32} \over {9900}}\)

Do đó

           \(0,27323232 \ldots  = {{27} \over {100}} + {{32} \over {9900}} = {{541} \over {1980}}\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH


Gửi bài