Câu 4.11 trang 135 sách bài tập Đại số và Giải tích 11 Nâng cao


Cho dãy số xác định bởi

Lựa chọn câu để xem lời giải nhanh hơn

Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi

\(\left\{ \matrix{
{u_1} = 10 \hfill \cr 
{u_{n + 1}} = \sqrt {{u_n}} \hfill \cr} \right.\)

Chứng minh rằng:

 

LG a

\({u_n} > 1\) với mọi n

 

Lời giải chi tiết:

 Chứng minh bằng phương pháp quy nạp

 

LG b

 \({u_{n + 1}} - 1 < {{{u_n} - 1} \over 2}\) với mọi n

 

Lời giải chi tiết:

\({u_{n + 1}} - 1 < \sqrt {{u_n}}  - 1 = {{{u_n} - 1} \over {\sqrt {{u_n}}  + 1}} \le {{{u_n} - 1} \over 2}\) với mọi n vì \(\sqrt {{u_n}}  > 1\)

 

LG c

Tìm \(\lim {u_n}\)

 

Lời giải chi tiết:

Đặt \({v_n} = {u_n} - 1,\) ta có

                         \(0 < {v_{n + 1}} \le {1 \over 2}{v_n}\) với mọi n

Do đó              \({v_2} \le {1 \over 2}{v_1}\);   \({v_3} \le {1 \over 2}{v_2} \le {\left( {{1 \over 2}} \right)^2}{v_1}\)

Bằng phương pháp quy nạp ta chứng minh được

                        \(0 < {v_n} \le {\left( {{1 \over 2}} \right)^{n - 1}}{v_1} = 9{\left( {{1 \over 2}} \right)^{n - 1}}\)

Vì \(\lim {\left( {{1 \over 2}} \right)^{n - 1}} = 0\) nên từ đó suy ra \(\lim {v_n} = 0\)

Vậy \({{\mathop{\rm limu}\nolimits} _n} = 1\)

Loigiaihay.com

 

Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.