Câu 4.12 trang 135 sách bài tập Đại số và Giải tích 11 Nâng cao


Cho dãy số xác định bởi

Lựa chọn câu để xem lời giải nhanh hơn

Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi

\(\left\{ \matrix{
{u_1} = - 5 \hfill \cr 
{u_{n + 1}} = {2 \over 3}{u_n} - 6 \hfill \cr} \right.\)

Gọi \(\left( {{v_n}} \right)\) là dãy số xác định bởi \({v_n} = {u_n} + 18\)

 

LG a

Chứng minh rằng \(\left( {{v_n}} \right)\) là một cấp số nhân lùi vô hạn

 

Lời giải chi tiết:

 \({v_{n + 1}} = {u_{n + 1}} + 18 = {2 \over 3}{u_n} - 6 + 18 = {2 \over 3}{u_n} + 12\)

Thay \({u_n} = {v_n} - 18\) vào đẳng thức trên, ta được

                        \({v_{n + 1}} = {2 \over 3}\left( {{v_n} - 18} \right) + 12 = {2 \over 3}{v_n}\)

Vậy dãy số \(\left( {{v_n}} \right)\) là một cấp số nhân với công bội \(q = {2 \over 3}\)

 

LG b

Tính tổng của cấp số nhân \(\left( {{v_n}} \right)\) và tìm \(\lim {u_n}\)

 

Lời giải chi tiết:

Tổng của cấp số nhân \(\left( {{v_n}} \right)\) là

                        \(S = {{{v_1}} \over {1 - q}} = {{13} \over {1 - {2 \over 3}}} = 39\)

Vì \(\lim {v_n} = 0\) nên \({{\mathop{\rm limu}\nolimits} _n} =  - 18\)

Loigiaihay.com

 

Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.