Câu 3.37 trang 91 sách bài tập Đại số và Giải tích 11 Nâng cao


Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa - GDCD

Đề bài

Cho một cấp số cộng có 7 số hạng với công sai dương và số hạng thứ tư bằng 11. Hãy tìm các số hạng còn lại của cấp số cộng đó, biết rằng hiệu của số hạng thứ ba và số hạng thứ năm bằng 6.

Lời giải chi tiết

Với mỗi \(n \in \left\{ {1,2,3,4,5,6,7} \right\},\) kí hiệu \({u_n}\) là số hạng thứ n của cấp số cộng đã cho.

Vì cấp số cộng nói trên có công sai \(d > 0\) nên \({u_3} < {u_5}\). Vì thế, từ giả thiết hiệu của \({u_3}\) và \({u_5}\) bằng 6 ta được \({u_5} - {u_3} = 6\) hay \(({u_1} + 4d) - ({u_1} + 2d) = 6\). Suy ra \(d = 3.\)

Vì thế, từ giả thiết \({u_4} = 11\) ta được \({u_1} = {u_4} - 3d = 11 - 3.3 = 2\)

Từ đó \({u_2} = {u_1} + d = 2 + 3 = 5,{u_3} = {u_2} + d = 5 + 3 = 8,\)

\({u_5} = {u_4} + d = 11 + 3 = 14\)

\({u_6} = {u_5} + d = 14 + 3 = 17\) và \({u_7} = {u_6} + d = 117 + 3 = 20.\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.