Câu 3.35 trang 91 sách bài tập Đại số và Giải tích 11 Nâng cao


Đề bài

Một cấp số cộng có 7 số hạng mà tổng của số hạng thứ ba và số hạng thứ năm bằng 28, tổng của số hạng thứ năm và số hạng cuối bằng 140. Hãy tìm cấp số cộng đó.

Lời giải chi tiết

Với mỗi \(n \in \left\{ {1,2,3,4,5,6,7} \right\},\) kí hiệu \({u_n}\) là số hạng thứ \(n\)  của cấp số cộng cần tìm. Theo giả thiết của bài ra, ta có \({u_3} + {u_5} = 28\) và \({u_5} + {u_7} = 140.\)Từ đó

\(\left. \matrix{
2{u_4} = 28 \Rightarrow {u_4} = 14 \hfill \cr 
2{u_6} = 140 \Rightarrow {u_6} = 70 \hfill \cr} \right\} \)

\(\Rightarrow 2{u_5} = {u_4} + {u_6} = 14 + 70 = 84 \Rightarrow {u_5} = 42.\)

Suy ra

\(\eqalign{
& {u_7} = 140 - {u_5} = 140 - 42 = 98 \cr 
& {u_3} = 28 - {u_5} = 28 - 42 = - 14 \cr 
& {u_2} = 2{u_3} - {u_4} = 2.( - 14) - 14 = - 42 \cr 
& {u_1} = 2{u_2} - {u_3} = 2.( - 42) - ( - 14) = - 70. \cr} \)

Vậy, cấp số cộng cần tìm là : \( - 70, - 42, - 14,14,42,70,98.\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 3. Cấp số cộng

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.