Câu 3.36 trang 91 sách bài tập Đại số và Giải tích 11 Nâng cao>
Cho cấp số cộng
Đề bài
Cho cấp số cộng \(({u_n})\) có số hạng đầu \({u_1} = 2\) và công sai \(d = - 3.\)
Trên mặt phẳng tọa độ, lấy các điểm \({A_1},{A_2},...\) sao cho với mỗi số nguyên dương n, điểm \({A_n}\) có tọa độ là \((n,{u_n})\). Chứng minh rằng tất cả các điểm \({A_n},n = 1,2,3,...,\) cùng nằm trên một đường thẳng. Hãy cho biết phương trình của đường thẳng đó.
Lời giải chi tiết
Từ giả thiết của bài toán suy ra \({u_n} = 2 + (n - 1).( - 3) = - 3n + 5\) với mọi \(n \ge 1.\) Vì thế với mỗi \(n \ge 1\), điểm \({A_n}(n,{u_n})\) nằm trên đường thẳng \(y = - 3x + 5\). Nói cách khác:
Tất cả các điểm \({A_n},n = 1,2,3,...,\) cùng nằm trên đường thẳng \(y = - 3x + 5\).
Loigiaihay.com
- Câu 3.37 trang 91 sách bài tập Đại số và Giải tích 11 Nâng cao
- Câu 3.38 trang 91 sách bài tập Đại số và Giải tích 11 Nâng cao
- Câu 3.39 trang 91 sách bài tập Đại số và Giải tích 11 Nâng cao
- Câu 3.40 trang 92 sách bài tập Đại số và Giải tích 11 Nâng cao
- Câu 3.41 trang 92 sách bài tập Đại số và Giải tích 11 Nâng cao
>> Xem thêm
Các bài khác cùng chuyên mục