Câu 20 trang 215 SGK Đại số và Giải tích 11 nâng cao


Tìm đạo hàm của các hàm số

Lựa chọn câu để xem lời giải nhanh hơn

Tìm đạo hàm của các hàm số

LG a

 \(y = {{\sqrt {{x^2} - 3x + 2} } \over x}\)  

Lời giải chi tiết:

\(y' = {{3x - 4} \over {2{x^2}\sqrt {{x^2} - 3x + 2} }}\)   

LG b

 \(y = {{{{\left( {{x^2} - x + 1} \right)}^2}} \over {\sqrt {3{x^2} + 1} }}\)

Lời giải chi tiết:

 \(y' = {{\left( {{x^2} - x + 1} \right)\left( {9{x^3} - 3{x^2} + x - 2} \right)} \over {\sqrt {{{\left( {3{x^2} + 1} \right)}^3}} }}\)

LG c

\(y = {\cos ^3}2x - {\sin ^2}3x\) 

Lời giải chi tiết:

\(y' =  - 6{\cos ^2}2x\sin 2x - 3\sin 6x\)

LG d

\(y = {\tan ^3}{\left( {{\pi  \over 4} - 2x} \right)^2}\)

Lời giải chi tiết:

 \(y' = 3\left( {8x - \pi } \right){\tan ^2}{\left( {{\pi  \over 4} - 2x} \right)^2}\left[ {1 + {{\tan }^2}{{\left( {{\pi  \over 4} - 2x} \right)}^2}} \right]\)

LG e

\(y = \sqrt {\cot \left( {{x^2} + 1} \right)} \)  

Lời giải chi tiết:

 \(y' = {{ - x\left[ {1 + {{\cot }^2}\left( {{x^2} + 1} \right)} \right]} \over {\sqrt {\cot \left( {{x^2} + 1} \right)} }}\)

LG f

\(y = \sqrt {{{\cos x} \over {1 - \sin x}}} \)

Phương pháp giải:

Hướng dẫn:  Đặt \(u = {{\cos x} \over {1 - \sin x}},\) ta có \(u' = {1 \over {1 - \sin x}}\) và 

\(y' = {{{u'}} \over {2\sqrt u }} = {1 \over {2\left( {1 - \sin x} \right)\sqrt {{{\cos x} \over {1 - \sin x}}} }}\)

Lời giải chi tiết:

\(y = {{ - 1} \over {2\sqrt {\cos x\left( {1 - \sin x} \right)} }}\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.