Bài 6 trang 39 SGK Hình học lớp 12

Bình chọn:
3.7 trên 3 phiếu

Giải bài 6 trang 39 SGK Hình học lớp 12. Cắt một hình nón bằng một mặt phẳng qua trục của nó ta được thiết diện là một tam giác đều canh 2a. Tính diện tích xung quanh và thể tích của hình nón đó.

Đề bài

Cắt một hình nón bằng một mặt phẳng qua trục của nó ta được thiết diện là một tam giác đều canh \(2a\). Tính diện tích xung quanh và thể tích của hình nón đó.

Phương pháp giải - Xem chi tiết

+) Từ giả thiết cắt một hình nón bằng một mặt phẳng qua trục của nó ta được thiết diện là một tam giác đều canh \(2a\) tính độ dài đường sinh \(l\) và bán kính đáy \(r\) của hình nón.

+) Sử dụng công thức \(h = \sqrt {{l^2} - {r^2}} \) với \(h\) là độ dài đường cao của hình nón, tính độ dài đường cao của hình nón.

+) Tính diện tích xung quanh và thể tích của hình nón đó: \({S_{xq}} = \pi rl,\,\,V = \frac{1}{3}\pi {r^2}h\)

Lời giải chi tiết

Theo đề bài, đường kính của hình tròn đáy của nón bằng \(2a\). Vậy bán kính \(R = a\) và độ dài đường sinh cua hình nón \(l = 2a\).

Suy ra chiều cao của hình nón: \(h = \sqrt {{l^2} - {r^2}}  = \sqrt {4{a^2} - {a^2}}  = a\sqrt 3 \)

Vậy diện tích xung quanh của hình nón là: \(S_{xq} = πRl = π.a.2a=2a^2π\)

Thể tích khối nón là: \(V = {1 \over 3}\pi {r^2}.h = {1 \over 3}\pi {a^2}.a\sqrt 3  = {{\pi {a^3}\sqrt 3 } \over 3}\)

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu



Các bài liên quan