Bài 3 trang 39 SGK Hình học lớp 12

Bình chọn:
4.3 trên 13 phiếu

Giải bài 3 trang 39 SGK Hình học lớp 12. Cho hình nón tròn xoay có đường cao h = 20 cm, bán kính đáy r = 25 cm.

Đề bài

Cho hình nón tròn xoay có đường cao \(h = 20 cm\), bán kính đáy \(r = 25 cm\).

a) Tính diện tích xung quanh của hình nón đã cho.

b) Tính thể tích của khối nón được tạo bởi hình nón đó.

c) Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện là \(12 cm\). Tính diện tích thiết diện đó.

Phương pháp giải - Xem chi tiết

a) Diện tích xung quanh của hình nón: \({S_{xq}} = \pi rl\) trong đó \(r\) là bán kính đáy và \(l\) là độ dài đường sinh của hình nón.

b) Thể tích của khối nón: \(V = \frac{1}{3}\pi {r^2}h\)  trong đó \(r\) là bán kính đáy và \(h\) là độ dài đường cao của hình nón.

c) Thiết diện đi qua đỉnh của hình nón là tam giác cân. Tính diện tích tam giác cân \(S = \frac{1}{2}ah\).

Lời giải chi tiết

a) Giả sử \(SA = l\) là độ dài đường sinh, \(SH = h\) là chiều cao hình nón.

Trong tam giác vuông \(SOA\) ta có:

\(\eqalign{
& S{A^2} = S{O^2} + O{A^2} = {h^2} + {r^2} = {20^2} + {25^2} = 1025 \cr
& \Rightarrow SA = \sqrt {1025} \cr}\) 

Diện tích xung quanh hình nón là:

\({S_{xq}} = \pi rl = \pi .25\sqrt {1025}  \approx 2514,5\left( {c{m^2}} \right)\)

b) Thể tích khối nón là:

\(V = {1 \over 3}\pi {r^2}h = {1 \over 3}\pi {.25^2}.20 \approx 13083,3\left( {c{m^3}} \right)\)

c) Giả sử thiết diện \(SAB\) đi qua đỉnh \(S\) cắt đường tròn đáy tại \(A\) và \(B\). Gọi \(I\) là trung điểm của dây cung \(AB\). Từ tâm \(O\) của đáy vẽ \(OH\) vuông góc với \(SI\).

Ta có \(\left\{ \matrix{
AB \bot OI \hfill \cr 
AB \bot SO \hfill \cr} \right. \Rightarrow AB \bot \left( {SOI} \right) \Rightarrow AB \bot OH\)

Từ đó \(\left\{ \matrix{
OH \bot AB \hfill \cr 
OH \bot SI \hfill \cr} \right. \Rightarrow OH \bot \left( {SAB} \right) \Rightarrow OH = 12cm\)

Trong tam giác vuông \(SOI\) ta có: \({1 \over {O{H^2}}} = {1 \over {O{I^2}}} + {1 \over {O{S^2}}}\)

\(\eqalign{
& \Rightarrow {1 \over {O{I^2}}} = {1 \over {O{H^2}}} - {1 \over {O{S^2}}} \cr
& = {1 \over {{{12}^2}}} - {1 \over {{{20}^2}}} = {{256} \over {57600}} = {1 \over {225}} \cr
& \Rightarrow OI = 15cm \cr} \)

Xét tam giác vuông \(OAI\) ta có \(AI^2 = OA^2 – OI^2 = 25^2 – 15^2 = 20^2\)

Vậy \(AI = 20cm\)\(\Rightarrow AB = 20.2 = 40\,cm\)

Ta có: \(SI.OH = SO.OI \Rightarrow SI = {{SO.OI} \over {OH}} = {{20.15} \over {12}} = 25cm\)  

Vậy diện tích thiết diện \(SAB\) là: \({S_{SAB}} = {1 \over 2}SI.AB = {1\over2}25.40 = 500\left( {c{m^2}} \right)\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

Bài 4 trang 39 SGK Hình học lớp 12 Bài 4 trang 39 SGK Hình học lớp 12

Giải bài 4 trang 39 SGK Hình học lớp 12. Trong không gian cho hai điểm A, B cố định và có độ dài AB = 20 cm,. Gọi d là một đường thẳng thay đổi luôn luôn đi qua A và cách B một khoảng bằng 10 cm

Xem chi tiết
Bài 5 trang 39 SGK Hình học lớp 12 Bài 5 trang 39 SGK Hình học lớp 12

Giải bài 5 trang 39 SGK Hình học lớp 12. Một hình trụ có bán kính đáy r = 5cm và có khoảng cách giữa hai đáy bằng 7 cm.

Xem chi tiết
Bài 6 trang 39 SGK Hình học lớp 12 Bài 6 trang 39 SGK Hình học lớp 12

Giải bài 6 trang 39 SGK Hình học lớp 12. Cắt một hình nón bằng một mặt phẳng qua trục của nó ta được thiết diện là một tam giác đều canh 2a. Tính diện tích xung quanh và thể tích của hình nón đó.

Xem chi tiết
Bài 7 trang 39 SGK Hình học lớp 12 Bài 7 trang 39 SGK Hình học lớp 12

Giải bài 7 trang 39 SGK Hình học lớp 12. Một hình trụ có bán kính r và chiều cao h = r√3.

Xem chi tiết
Lý thuyết hàm số mũ, hàm số lôgarit Lý thuyết hàm số mũ, hàm số lôgarit

1. Định nghĩa

Xem chi tiết
Lý thuyết hàm số lũy thừa Lý thuyết hàm số lũy thừa

1. Khái niệm hàm số lũy thừa

Xem chi tiết
Lý thuyết khối đa diện lồi và khối đa diện đều Lý thuyết khối đa diện lồi và khối đa diện đều

Khối đa diện (H) được gọi là khối đa diện lồi nếu đoạn thẳng nối hai điểm bất kì của (H) luôn thuộc (H). Khi đó đa diện giới hạn (H) được gọi là đa diện lồi

Xem chi tiết
Lý thuyết cực trị của hàm số Lý thuyết cực trị của hàm số

Cho hàm số y = f(x) liên tục trên khoảng (a ; b) và điểm x ∈ (a ; b).

Xem chi tiết

>>Học trực tuyến luyện thi THPTQG, Đại học 2020, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới nâng cao.