Bài 34 trang 73 Vở bài tập toán 9 tập 2>
Giải Bài 34 trang 73 VBT toán 9 tập 2. Một xuồng du lịch đi từ thành phố Cà Mau đến Đất Mũi theo một đường sông dài 120km ...
Đề bài
Một xuồng du lịch đi từ thành phố Cà Mau đến Đất Mũi theo một đường sông dài 120km. Trên đường đi, xuồng nghỉ lại 1 giờ ở thị trấn Năm Căn. Khi về, xuồng đi theo đường khác dài hơn đường lúc đi là 5 km và với vận tốc nhỏ hơn vận tốc lúc đi là 5km/h. Tính vận tốc của xuồng lúc đi, biết rằng thời gian về bằng thời gian đi.
Phương pháp giải - Xem chi tiết
Giải bài toán chuyển động bằng cách lập phương trình
Ta thường sử dụng các công thức \(S = v.t\), \(v = \dfrac{S}{t},t = \dfrac{S}{v}\)
Với \(S:\) là quãng đường, \(v:\) là vận tốc, \(t\): thời gian
Lời giải chi tiết
Gọi vận tốc xuồng lúc đi là \(x\left( {km/h} \right),x > 0\)
vận tốc xuồng lúc về là \(x - 5\left( {km/h} \right)\,\)
Thời gian đi \(120km\) là \(\dfrac{{120}}{x}\) (giờ)
Vì khi đi có nghỉ 1 giờ nên thời gian khi đi hết tất cả là \(\dfrac{{120}}{x} + 1\) (giờ)
Đường về dài \(120 + 5 = 125(km)\)
Thời gian về là \(\dfrac{{125}}{{x - 5}}\,\) (giờ)
Theo đầu bài, thời gian về bằng thời gian đi nên ta có phương trình:
\(\dfrac{{120}}{x} + 1 = \dfrac{{125}}{{x - 5}}\)
Giải phương trình
Khủ mẫu và biến đổi ta được
\(\begin{array}{l}120\left( {x - 5} \right) + x\left( {x - 5} \right) = 125x\\ \Leftrightarrow {x^2} - 10x - 600 = 0\end{array}\)
Phương trình trên có \(\Delta ' = {\left( { - 5} \right)^2} - 1.\left( { - 600} \right) = 625 > 0\)\( \Rightarrow \sqrt \Delta = 25\)
Nên phương trình có hai nghiệm \(\left[ \begin{array}{l}x = \dfrac{{5 + 25}}{1} = 30\\x = \dfrac{{5 - 25}}{1} = - 20\end{array} \right.\)
Vì \(x > 0\) nên \(x = 30\)
Trả lời: Vận tốc của xuồng khi đi là \(30\,\left( {km/h} \right)\).
Loigiaihay.com
- Bài 35 trang 73 Vở bài tập toán 9 tập 2
- Bài 36 trang 74 Vở bài tập toán 9 tập 2
- Bài 37 trang 74 Vở bài tập toán 9 tập 2
- Bài 38 trang 75 Vở bài tập toán 9 tập 2
- Bài 39 trang 76 Vở bài tập toán 9 tập 2
>> Xem thêm