Bài 17 trang 57 Vở bài tập toán 9 tập 2


Giải Bài 17 trang 57 VBT toán 9 tập 2. Giải vài phương trìnhcủa An-Khô-va-ri-zmi (Xem Toán 7, tập 2, tr.26):...

Lựa chọn câu để xem lời giải nhanh hơn

Giải vài phương trình của An-Khô-va-ri-zmi (Xem Toán 7, tập 2, tr.26):

LG a

\({x^2} = 12x + 288\)

Phương pháp giải:

Sử dụng công thức nghiệm thu gọn của phương trình bậc hai

Xét phương trình bậc hai \(a{x^2} + bx + c = 0{\rm{ }}(a \ne 0)\) với \(b = 2b'\) và biệt thức \(\Delta ' = {\left( {b'} \right)^2} - ac.\)

Trường hợp 1. Nếu \(\Delta ' < 0\) thì phương trình vô nghiệm. 

Trường hợp 2. Nếu \(\Delta ' = 0\) thì phương trình có nghiệm kép \({x_1} = {x_2} =  - \dfrac{{b'}}{a}\)

Trường hợp 3. Nếu \(\Delta ' > 0\) thì phương trình có hai nghiệm phân biệt: \({x_{1,2}}=  \dfrac{{-b' \pm \sqrt {\Delta '} }}{a}\)

Để ý rằng nếu hệ số \(b'\) không là số nguyên thì ta nên dùng công thức nghiệm (không thu gọn) để giải phương trình.

Lời giải chi tiết:

\({x^2} = 12x + 288 \Leftrightarrow {x^2} - 12x - 288 = 0\)\(\left( {a = 1;b' =  - 6;c =  - 288} \right)\)

Suy ra \(\Delta ' = {\left( {b'} \right)^2} - ac \)\(= {\left( { - 6} \right)^2} - 1.\left( { - 288} \right) = 324 > 0\)

Nên phương trình có hai nghiệm phân biệt 

\({x_1} = \dfrac{{ - b' + \sqrt {\Delta '} }}{a} \)\(= \dfrac{{ - \left( { - 6} \right) + \sqrt {324} }}{1} = 24;{x_2} \)\(= \dfrac{{ - b' - \sqrt {\Delta '} }}{a} \)\(= \dfrac{{ - \left( { - 6} \right) - \sqrt {324} }}{1} =  - 12\)

Hay phương trình có hai nghiệm \(x = 24;x =  - 12.\)

LG b

\(\dfrac{1}{{12}}{x^2} + \dfrac{7}{{12}}x = 19\)

Phương pháp giải:

Sử dụng công thức nghiệm thu gọn của phương trình bậc hai

Xét phương trình bậc hai \(a{x^2} + bx + c = 0{\rm{ }}(a \ne 0)\) với \(b = 2b'\) và biệt thức \(\Delta ' = {\left( {b'} \right)^2} - ac.\)

Trường hợp 1. Nếu \(\Delta ' < 0\) thì phương trình vô nghiệm. 

Trường hợp 2. Nếu \(\Delta ' = 0\) thì phương trình có nghiệm kép \({x_1} = {x_2} =  - \dfrac{{b'}}{a}\)

Trường hợp 3. Nếu \(\Delta ' > 0\) thì phương trình có hai nghiệm phân biệt: \({x_{1,2}}=  \dfrac{{-b' \pm \sqrt {\Delta '} }}{a}\)

Để ý rằng nếu hệ số \(b'\) không là số nguyên thì ta nên dùng công thức nghiệm (không thu gọn) để giải phương trình.

Lời giải chi tiết:

\(\dfrac{1}{{12}}{x^2} + \dfrac{7}{{12}}x = 19\)\( \Leftrightarrow {x^2} + 7x - 228 = 0\)\(\left( {a = 1;b = 7;c =  - 228} \right)\)

\(\Delta  = {b^2} - 4ac\)\( = {7^2} - 4.1.\left( { - 228} \right) = 961 > 0;\)\(\sqrt \Delta   = 31\)

Phương trình có hai nghiệm phân biệt

\({x_1} = \dfrac{{ - b + \sqrt \Delta  }}{{2a}} \)\(= \dfrac{{ - 7 + \sqrt {961} }}{2} = 12;\)

\({x_2} = \dfrac{{ - b - \sqrt \Delta  }}{{2a}} \)\(= \dfrac{{ - 7 - \sqrt {961} }}{2} =  - 19\)

Hay phương trình có hai nghiệm \(x = 12;x =  - 19.\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 5. Công thức nghiệm thu gọn

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài