Bài 16 trang 56 Vở bài tập toán 9 tập 2


Giải Bài 16 trang 56 VBT toán 9 tập 2. Giải các phương trình a)25x^2-16=0...

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình:

LG a

\(25{x^2} - 16 = 0\)

Phương pháp giải:

Biến đổi đưa phương trình về dạng \({x^2} = a\left( {a \ge 0} \right) \Leftrightarrow \left[ \begin{array}{l}x = a\\x =  - a\end{array} \right.\)

Hoặc đưa về phương trình tích hoặc sử dụng công thức nghiệm thu gọn để giải phương trình.

Lời giải chi tiết:

\(25{x^2} - 16 = 0 \Leftrightarrow 25{x^2} = 16 \)\(\Leftrightarrow {x^2} = \dfrac{{16}}{{25}} \)\(\Leftrightarrow \left[ \begin{array}{l}x = \dfrac{4}{5}\\x =  - \dfrac{4}{5}\end{array} \right.\)

Phương trình có hai nghiệm phân biệt \(x = \dfrac{4}{5};x =  - \dfrac{4}{5}.\)

LG b

\(2{x^2} + 3 = 0\) 

Phương pháp giải:

Biến đổi đưa phương trình về dạng \({x^2} = a\left( {a \ge 0} \right) \Leftrightarrow \left[ \begin{array}{l}x = a\\x =  - a\end{array} \right.\)

Hoặc đưa về phương trình tích hoặc sử dụng công thức nghiệm thu gọn để giải phương trình.

Lời giải chi tiết:

\(2{x^2} + 3 = 0 \Leftrightarrow 2{x^2} =  - 3\) 

Vì vế trái không âm, còn vế phải luôn âm  nên phương trình vô nghiệm.

LG c

\(4,2{x^2} + 5,46x = 0\)

Phương pháp giải:

Biến đổi đưa phương trình về dạng \({x^2} = a\left( {a \ge 0} \right) \Leftrightarrow \left[ \begin{array}{l}x = a\\x =  - a\end{array} \right.\)

Hoặc đưa về phương trình tích hoặc sử dụng công thức nghiệm thu gọn để giải phương trình.

Lời giải chi tiết:

\(4,2{x^2} + 5,46x = 0 \)\(\Leftrightarrow x\left( {4,2x + 5,46} \right) = 0 \)\(\Leftrightarrow \) \(x = 0\) hoặc \(4,2x + 5,46 = 0\) \( \Leftrightarrow x = 0\) hoặc \(x =  - 1,3\)  

Phương trình có hai nghiệm \({x_1} = 0;{x_2} =  - 1,3.\)

LG d

\(4{x^2} - 2\sqrt 3 x = 1 - \sqrt 3 \)

Phương pháp giải:

Biến đổi đưa phương trình về dạng \({x^2} = a\left( {a \ge 0} \right) \Leftrightarrow \left[ \begin{array}{l}x = a\\x =  - a\end{array} \right.\)

Hoặc đưa về phương trình tích hoặc sử dụng công thức nghiệm thu gọn để giải phương trình.

Lời giải chi tiết:

\(4{x^2} - 2\sqrt 3 x = 1 - \sqrt 3 \)\( \Leftrightarrow 4{x^2} - 2\sqrt 3 x + \sqrt 3  - 1 = 0\)\(\left( {a = 4;b' =  - \sqrt 3 ;c = \sqrt 3  - 1} \right)\)

Suy ra \(\Delta ' = {\left( {b'} \right)^2} - ac\)\( = {\left( { - \sqrt 3 } \right)^2} - 4.\left( {\sqrt 3  - 1} \right) \)\(= 7 - 4\sqrt 3  = {\left( {2 - \sqrt 3 } \right)^2} > 0;\)\(\sqrt {\Delta '}  = 2 - \sqrt 3 \)

Phương trình có hai nghiệm phân biệt

\({x_1} = \dfrac{{ - b' + \sqrt {\Delta '} }}{a} \)\(= \dfrac{{ - \left( { - \sqrt 3 } \right) + 2 - \sqrt 3 }}{4} = \dfrac{1}{2};\)\({x_2} = \dfrac{{ - b' - \sqrt {\Delta '} }}{a} \)\(= \dfrac{{ - \left( { - \sqrt 3 } \right) - \left( {2 - \sqrt 3 } \right)}}{4} \)\(= \dfrac{{\sqrt 3  - 1}}{2}\)

Hay phương trình có hai nghiệm \(x = \dfrac{1}{2};x = \dfrac{{\sqrt 3  - 1}}{2}\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 5. Công thức nghiệm thu gọn

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài