Lý thuyết mặt cầu

Bình chọn:
3.5 trên 4 phiếu

1. Định nghĩa: Tâph hợp các điểm trong không gian cách điểm O cố định một khoảng không đổi r (r>0) được gọi là một mặt cầu tâm o bán kính r.

1. Định nghĩa: Tâph hợp các điểm trong không gian cách điểm \(O\) cố định một khoảng không đổi \(r (r>0)\) được gọi là một mặt cầu tâm \(O\) bán kính \(r\).

\(S(O;r) = \left\{ {M|OM = r} \right\}\)

* Đoạn thẳng nối hai điểm nằm trên mặt cầu gọi là dây cung của mặt cầu.

* Dây cung đi qua tâm gọi là đường kính.

* Cho mặt cầu \(S(O;r)\) và điểm \(A\) trong không gian.

- Nếu \(OA = r\) thì điểm \(A\) nằm trên mặt cầu

- Nếu \(OA < r\) thì điểm \(A\) nằm trong mặt cầu.

- Nếu \(OA > r\) thì điểm \(A\) nằm ngoài mặt cầu.

2. Tính chất: Nếu điểm \(A\) ngoài mặt cầu \(S(O; r)\) thì:

- Qua \(A\) có vô số tiếp tuyến với mặt càu.

- Độ dài các đoạn thẳng nối \(A\) với các tiếp điểm đều bằng nhau.

- Tập hợp các tiếp điểm là một đường tròn nằm trên mặt cầu.

3. Giao của mặt cầu với mặt phẳng

Cho mặt cầu \(S(O; r)\) tâm \(O\) bán kính \(r\) và mặt phẳng \((P)\); \(H\) là hình chiếu vuông góc của \(O\) lên mặt phẳng \((P)\). Khi đó \(h = OH\) là khoảng cách từ \(O\) đến mặt phẳng \((P)\). Khi đó \(h = OH\) là khoảng cách từ \(O\) đến mặt phẳng \((P)\).

- Nếu \(h = r\) thì \((P)\) tiếp xúc mặt cầu.

- Nếu \(h > r\) thì \((P)\) không có điểm chung với mặt cầu.

- Nếu \(h < r\) thì \((P)\) giao mặt cầu \(S(O;r)\) theo một đường tròn tâm \(H\), bán kính

\(r = \sqrt {{r^2} - {h^2}}\) nằm trên mặt phẳng \((P)\).

4. Giao của mặt cầu với đường thẳng.

Cho mặt cầu \(S(O;r)\) và đường thẳng \(∆\). Gọi \(H\) là chân đường vuông góc hạ từ \(O\) lên \(∆\), đặt \(h = OH\). Thế thì:

- Khi \(h = r\) ta có đường thẳng \(∆\) tiếp xúc với mặt cầu tại \(H\).

- Khi \(h < r\): đường thẳng \(∆\) cắt mặt cầu tại hai điểm \(A, B\) mà độ dài  \(AB = 2\sqrt {{r^2} - {h^2}} \)

- Khi \(h > r\) đường thẳng \(∆\) không cắt mặt cầu.
  5. Công thức diện tích mặt cầu và thể tích hình cầu
Mặt cầu bán kính \(r\) có diện tích là \(S = 4\pi {r^2}\).
Khối cầu bán kính \(r\) có thể tích là \(V = {4 \over 3}\pi {r^3}\)

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan