Giải bài 2 trang 49 SGK Hình học lớp 12


Đề bài

Cho hình chóp tứ giác đều \(S.ABCD\) có tất cả các cạnh đều bằng \(a\). Hãy xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp đó.

Phương pháp giải - Xem chi tiết

+) Sử dụng đính lý Pi-ta-go để tính các cạnh và tìm tâm, tính bán kính của mặt cầu ngoại tiếp khối chóp.

Lời giải chi tiết

Gọi \(I = AC ∩ BD\). 

Ta có ABCD là hình vuông cạnh \(a\) nên ta có:  \(AC = BD = AB\sqrt 2  = a\sqrt 2 .\)

\(\Delta ASC\) có \(S{A^2} + S{C^2} = {a^2} + {a^2} = 2{a^2} = A{C^2}\) nên là tam giác vuông cân tại \(S\).

Tương tự tam giác SBD cũng vuông cân tại S.

\( \Rightarrow \dfrac{1}{{S{I^2}}} = \dfrac{1}{{S{A^2}}} + \dfrac{1}{{S{C^2}}}\) \( = \dfrac{1}{{{a^2}}} + \dfrac{1}{{{a^2}}} = \dfrac{2}{{{a^2}}} \Rightarrow SI = \dfrac{{a\sqrt 2 }}{2}.\)

\( \Rightarrow IA = IB = IC = ID = IS = \dfrac{{a\sqrt 2 }}{2}\)

Vậy mặt cầu ngoại tiếp hình chóp \(SABCD\) có tâm \(I\) và bán kính \(R= \dfrac{{a\sqrt 2 }}{2}.\)

Cách khác:

Có thể tính IS như sau:

\(IS = \sqrt {S{A^2} - A{I^2}} \) \( = \sqrt {{a^2} - \dfrac{{2{a^2}}}{4}}  = \dfrac{{a\sqrt 2 }}{2}\)

Từ đó ta cũng kết luận được I là tâm mặt cầu ngoại tiếp hình chóp và bán kính bằng \(\dfrac{{a\sqrt 2 }}{2}\).

Loigiaihay.com


Bình chọn:
4.6 trên 15 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.