Bài 2 trang 49 SGK Hình học lớp 12

Bình chọn:
4.3 trên 6 phiếu

Giải bài 2 trang 49 SGK Hình học lớp 12. Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Hãy xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp đó.

Đề bài

Cho hình chóp tứ giác đều \(S.ABCD\) có tất cả các cạnh đều bằng \(a\). Hãy xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp đó.

Phương pháp giải - Xem chi tiết

+) Sử dụng đính lý Pi-ta-go để tính các cạnh và tìm tâm, tính bán kính của mặt cầu ngoại tiếp khối chóp.

Lời giải chi tiết

Gọi \(I = AC ∩ BD\). 

Ta có ABCD là hình vuông cạnh \(a\) nên ta có:  \(AC = BD = AB\sqrt 2  = a\sqrt 2 .\)

Các  \(\Delta ASC;\;\;\Delta BSD\) là các tam giác vuông cân tại \(S\)  \( \Rightarrow \frac{1}{{S{I^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{S{C^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{{a^2}}} = \frac{2}{{{a^2}}} \Rightarrow SI = \frac{{a\sqrt 2 }}{2}.\)

 \( \Rightarrow IA = IB = IC = ID = IS = \frac{{a\sqrt 2 }}{2}.\)

Vậy mặt cầu ngoại tiếp hình chóp \(SABCD\) có tâm \(I\) và bán kính \(R= \frac{{a\sqrt 2 }}{2}.\)

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan