Bài 6 trang 49 SGK Hình học lớp 12


Giải bài 6 trang 49 SGK Hình học lớp 12. Gọi mặt cầu S(O; r) tiếp xúc với (P) tại I. Gọi M là một điểm nằm trên mặt cầu nhưng không phải là điểm đối xứng với I qua tâm O

Đề bài

Gọi mặt cầu \(S(O; r)\) tiếp xúc với \((P)\) tại \(I\). Gọi \(M\) là một điểm nằm trên mặt cầu nhưng không phải là điểm đối xứng với \(I\) qua tâm \(O\). Từ \(M\) kẻ hai tiếp tuyến cắt của mặt cầu cắt \((P)\) tại \(A\) và \(B\). Chứng minh rằng \( \widehat{AMB}= \widehat{AIB}\).

Phương pháp giải - Xem chi tiết

+) Áp dụng tính chất của hai tiếp tuyến cắt nhau.

+) Chứng minh hai tam giác bằng nhau suy ra các góc tương ứng bằng nhau.

Lời giải chi tiết

Do mặt cầu S(O; r) tiếp xúc với mp (P) tại I nên: OI ⊥ (P) ⇒ OI ⊥ IA

Suy ra, AI là tiếp tuyến của mặt cầu đã cho tại điểm I.

Theo tính chất của mặt cầu, ta có \(AI\) và \(AM\) là hai tiếp tuyến với cầu kẻ từ \(A\), cho nên \(AI = AM\), tương tự \(BI =BM\)

Hai tam giác \(ABI\) và \(ABM\) bằng nhau (c.c.c)

\( \Rightarrow \widehat{AMB}= \widehat{AIB}\) (Hai góc tương ứng).

Loigiaihay.com 


Bình chọn:
3.4 trên 5 phiếu

Các bài liên quan: - Bài 2. Mặt cầu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài