Lý thuyết giá trị lớn nhất và nhỏ nhất của hàm số


Cho hàm số y = f(x) xác định trên tập D.

Tóm tắt kiến thức

1. Định nghĩa

Cho hàm số y = f(x) xác định trên tập D.

- Số M là giá trị lớn nhất (GTLN) của hàm số f trên D 

\(⇔\left\{ \matrix{
f(x) \le M,\forall x \in D \hfill \cr
\exists {x_0} \in D\text{ sao cho }f({x_0}) = M \hfill \cr} \right.\)

Kí hiệu : \(M=\underset{D}{\max} f(x).\)

- Số m là giá trị nhỏ nhất (GTNN) của hàm số f trên D

\(⇔\left\{ \matrix{
f(x) \ge m,\forall x \in D \hfill \cr
\exists {x_0} \in D\text{ sao cho }f({x_0}) = m \hfill \cr} \right.\)

Kí hiệu: \(m=\underset{D}{\min} f(x).\)

2. Cách tính giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên một đoạn

Định lí

Hàm số liên tục trên một đoạn thì có GTLN và GTNN trên đoạn đó.

Quy tắc tìm GTLN, GTNN của hàm số \(y = f(x)\) liên tục trên đoạn [a ; b]

- Tìm các điểm x∈ (a ; b)(i = 1, 2, . . . , n) mà tại đó f'(xi) = 0 hoặc f'(xi) không xác định.

- Tính f(a), f(b), f(xi) (i = 1, 2, . . . , n) .

- Khi đó: \(\underset{[a;b]}{\max} f(x)=\max \left \{ f(a); f(b); f(x_{i}) \right \}\);

\(\underset{[a;b]}{\min} f(x)=\min \left \{ f(a); f(b); f(x_{i}) \right \}\)

3. Chú ý

Để tìm GTLN, GTNN của hàm số y=f(x) xác định trên tập hợp D, ta có thể khảo sát sự biến thiên của hàm số trên D, rồi căn cứ vào bảng biến thiên của hàm số mà kết luận về GTLN và GTNN của hàm số.

Loigiaihay.com


Bình chọn:
4.3 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài