Bài 1 trang 23 SGK Giải tích 12


Giải bài 1 trang 23 SGK Giải tích 12. Tính giá trị lớn nhất, giá trị nhỏ nhất của hàm số:

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Tính giá trị lớn nhất, giá trị nhỏ nhất của hàm số:

\(y{\rm{ }} = {\rm{ }}{x^3}-{\rm{ }}3{x^2}-{\rm{ }}9x{\rm{ }} + {\rm{ }}35\) trên các đoạn \([-4; 4]\) và \([0;5]\);

Phương pháp giải:

Để tìm GTLN, GTNN của hàm số \(y=f\left( x \right)\) trên đoạn \(\left[ a;\ b \right]\) ta làm như sau :

+) Tìm các điểm \({{x}_{1}};\ {{x}_{2}};\ {{x}_{3}};...;\ {{x}_{n}}\) thuộc đoạn \(\left[ a;\ b \right]\) mà tại đó hàm số có đạo hàm \(f'\left( x \right)=0\) hoặc không có đạo hàm.

+) Tính \(f\left( {{x}_{1}} \right);\ \ f\left( {{x}_{2}} \right);\ \ f\left( {{x}_{3}} \right);...;\ \ f\left( {{x}_{n}} \right)\) và \(f\left( a \right);\ f\left( b \right).\)

+) So sánh các giá trị tìm được ở trên. Giá trị lớn nhất trong các giá trị đó chính là GTLN của hàm số \(y=f\left( x \right)\) trên \(\left[ a;\ b \right]\) và giá trị nhỏ nhất trong các giá trị đó chính là GTNN của hàm số \(y=f\left( x \right)\) trên \(\left[ a;\ b \right]\).

\(\begin{align}& \underset{x\in \left[ a;\ b \right]}{\mathop{\max }}\,f\left( x \right)\cr&=\max \left\{ f\left( {{x}_{1}} \right);\ f\left( {{x}_{2}} \right);...;\ f\left( {{x}_{m}} \right);\ f\left( a \right);\ f\left( b \right) \right\}. \\ & \underset{x\in \left[ a;\ b \right]}{\mathop{\min }}\,f\left( x \right)\cr&=\min \left\{ f\left( {{x}_{1}} \right);\ f\left( {{x}_{2}} \right);...;\ f\left( {{x}_{m}} \right);\ f\left( a \right);\ f\left( b \right) \right\}. \\ \end{align}\)

Lời giải chi tiết:

\(\displaystyle y={{x}^{3}}-3{{x}^{2}}-9x+35\)

+) Xét \(\displaystyle D=\left[ -4;\ 4 \right]\) có :

\(\displaystyle y'=3{{x}^{2}}-6x-9\) \(\Rightarrow y'=0\Leftrightarrow 3{{x}^{2}}-6x-9=0\) \(\Leftrightarrow \left[ \begin{align} & x=3\ \in D \\ & x=-1\ \in D \\ \end{align} \right..\)

Ta có : \(\displaystyle y\left( -4 \right)=-41; y\left( 1 \right)=40;\) \(y\left( 3 \right)=8; y\left( 4 \right)=15.\)

Vậy \(\displaystyle \underset{x\in \left[ -4;\ 4 \right]}{\mathop{\max }}\,y=40\ \ khi\ \ x=-1\) và \(\displaystyle \underset{x\in \left[ -4;\ 4 \right]}{\mathop{\min }}\,y=-41\ \ khi\ \ x=-4.\)

+) Xét \(\displaystyle D=\left[ 0;\ 5 \right]\) có:

\(\displaystyle y'=3{{x}^{2}}-6x-9\) \(\Rightarrow y'=0\Leftrightarrow 3{{x}^{2}}-6x-9=0\) \(\Leftrightarrow \left[ \begin{align}& x=3\ \in D \\ & x=-1\ \notin D \\ \end{align} \right..\)

Ta có : \(\displaystyle y\left( 0 \right)=35;\ \ y\left( 3 \right)=8;\) \( y\left( 5 \right)=40.\)

Vậy \(\displaystyle \underset{x\in \left[ 0;\ 5 \right]}{\mathop{\max }}\,y=40\ \ khi\ \ x=5\) và \(\displaystyle \underset{x\in \left[ 0;\ 5 \right]}{\mathop{\min }}\,y=8\ \ khi\ \ x=3.\)

LG b

\(y{\rm{ }} = {\rm{ }}{x^4}-{\rm{ }}3{x^2} + {\rm{ }}2\) trên các đoạn \([0;3]\) và \([2;5]\);

Lời giải chi tiết:

\(\displaystyle y={{x}^{4}}-3{{x}^{2}}+2\)

Ta có:\(\displaystyle y'=4{{x}^{3}}-6x\) \(\Rightarrow y'=0\Leftrightarrow 4{{x}^{3}}-6x=0\) \(\Leftrightarrow \left[ \begin{align}& x=0 \\ & x=\sqrt{\frac{3}{2}}=\frac{\sqrt{6}}{2} \\ & x=-\sqrt{\frac{3}{2}}=-\frac{\sqrt{6}}{2} \\ \end{align} \right.\)

+) Xét \(\displaystyle D=\left[ 0;\ 3 \right]\) có: \(\displaystyle x=-\frac{\sqrt{6}}{2}\notin D.\)

Có: \(\displaystyle y\left( 0 \right)=2;\ \ y\left( 3 \right)=56;\) \( y\left( \frac{\sqrt{6}}{2} \right)=-\frac{1}{4}.\)

Vậy \(\displaystyle \underset{x\in \left[ 0;\ 3 \right]}{\mathop{\min }}\,y=-\frac{1}{4}\ \ khi\ \ x=\frac{\sqrt{6}}{2}\)  và \(\displaystyle \underset{x\in \left[ 0;\ 3 \right]}{\mathop{\max }}\,y=56\ \ khi\ \ x=3.\)

+) Xét \(\displaystyle D=\left[ 2;\ 5 \right]\) ta thấy \(\displaystyle x=0;\ \ x=\pm \frac{\sqrt{6}}{2}\ \ \notin \ D.\)

Có \(\displaystyle y\left( 2 \right)=6;\ \ y\left( 5 \right)=552.\)

Vậy \(\displaystyle \underset{x\in \left[ 2;\ 5 \right]}{\mathop{\min }}\,y=6\ \ khi\ \ x=2\)  và \(\displaystyle \underset{x\in \left[ 2;\ 5 \right]}{\mathop{\max }}\,y=552\ \ khi\ \ x=5.\)

LG c

\(y = {{2 - x} \over {1 - x}}\) trên các đoạn \([2;4]\) và \([-3;-2]\);

Lời giải chi tiết:

\(\displaystyle y=\frac{2-x}{1-x}=\frac{x-2}{x-1}\). Tập xác định: \(\displaystyle R\backslash \left\{ 1 \right\}.\)  

Ta có: \(\displaystyle y'=\frac{1.\left( -1 \right)-1.\left( -2 \right)}{{{\left( x-1 \right)}^{2}}}=\frac{1}{{{\left( x-1 \right)}^{2}}}>0\ \ \forall x\ne 1.\)

+) Với \(\displaystyle D=\left[ 2;\ 4 \right]\) có: \(\displaystyle y\left( 2 \right)=0;\ \ y\left( 4 \right)=\frac{2}{3}.\)

Vậy \(\displaystyle \underset{x\in \left[ 2;\ 4 \right]}{\mathop{\min }}\,y=0\ \ khi\ \ x=2\)  và \(\displaystyle \underset{x\in \left[ 2;\ 4 \right]}{\mathop{\max }}\,y=\frac{2}{3}\ \ khi\ \ x=4.\)

+) Với \(\displaystyle D=\left[ -3;\ -2 \right]\) có: \(\displaystyle y\left( -3 \right)=\frac{5}{4};\ \ y\left( -2 \right)=\frac{4}{3}.\)

Vậy \(\displaystyle \underset{x\in \left[ -3;\ -2 \right]}{\mathop{\min }}\,y=\frac{5}{4}\ \ khi\ \ x=-3\)  và \(\displaystyle \underset{x\in \left[ -3;\ -2 \right]}{\mathop{\max }}\,y=\frac{4}{3}\ \ khi\ \ x=-2.\)

LG d

\(y = \sqrt {5 - 4{\rm{x}}}\) trên đoạn \([-1;1]\).

Lời giải chi tiết:

\(\displaystyle y=\sqrt{5-4x}\) . Tập xác định: \(\displaystyle \left( -\infty ;\ \frac{5}{4} \right].\)

Xét tập \(\displaystyle D=\left[ -1;\ 1 \right]:\)

Có: \(\displaystyle y'=\frac{\left( 5-4x \right)'}{2\sqrt{5-4x}}=\frac{-2}{\sqrt{5-4x}}<0\ \forall x\in \left[ -1;\ 1 \right].\)

Ta có: \(\displaystyle y\left( -1 \right)=3;\ \ y\left( 1 \right)=1.\)

Vậy \(\displaystyle \underset{x\in \left[ -1;\ 1 \right]}{\mathop{\min }}\,y=1\ \ khi\ \ x=1\)  và \(\displaystyle \underset{x\in \left[ -1;\ 1 \right]}{\mathop{\max }}\,y=3\ \ khi\ \ x=-1.\)

 Loigiaihay.com


Bình chọn:
4.1 trên 50 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài