Phần câu hỏi bài 10 trang 119, 120 Vở bài tập toán 9 tập 2


Giải phần câu hỏi bài 10 trang 119, 120 VBT toán 9 tập 2. Diện tích hình vành khăn giữa hai đường tròn đồng tâm (O ; R) và (O ; r) (R > r) là 12,5pi xăng-ti-mét vuông. Tiếp tuyến tại M của đường tròn (O ; r) cắt đường tròn (O ; R) tại A và B...

Lựa chọn câu để xem lời giải nhanh hơn

Câu 23

Diện tích hình vành khăn giữa hai đường tròn đồng tâm \((O ; R)\) và \((O ; r) (R > r)\) là \(12,5\pi \,c{m^2}\). Tiếp tuyến tại \(M\) của đường tròn \((O ; r)\) cắt đường tròn \((O ; R)\) tại \(A\) và \(B\). Độ dài dây cung \(AB\) của đường tròn lớn tiếp xúc với đường tròn nhỏ là:

(A) \(5:\sqrt 2 \)                       (B) \(5\)

(C) \(5\sqrt 2 \)                           (D) \(10\)

Khoanh tròn vào chữ cái trước kết quả đúng.

Phương pháp giải:

+ Sử dụng công thức tính diện tích hình tròn bán kính \(R\) là \(S = \pi {R^2}\), từ đó suy ra diện tích hình vành khăn

+ Sử dụng quan hệ giữa đường kính và dây cung, định lý Pytago để tính toán.

Lời giải chi tiết:

Diện tích hình tròn \(\left( {O;R} \right)\) là \({S_1} = \pi {R^2}\,\left( {c{m^2}} \right)\) , diện tích hình tròn \(\left( {O;r} \right)\) là \({S_2} = \pi {r^2}\,\left( {c{m^2}} \right)\)

Suy ra diện tích hình vành khăn là \(S = {S_1} - {S_2} = \pi {R^2} - \pi {r^2}\,\,\left( {c{m^2}} \right)\)

Từ bài cho ta có \(S = 12,5\pi \,\left( {c{m^2}} \right) \Rightarrow \pi {R^2} - \pi {r^2}\)\( = 12,5\pi  \Leftrightarrow {R^2} - {r^2} = 12,5\)

Xét đường tròn \(\left( {O;r} \right)\) có \(AB\) là tiếp tuyến tại \(M \Rightarrow OM \bot AB\)

Xét \(\left( {O;R} \right)\) có \(OM \bot AB\) nên \(M\) là trung điểm \(AB\) (quan hệ giữa dây và đường kính), suy ra \(AB = 2MB.\)

Xét tam giác \(OMB\) vuông tại \(M\), theo định lý Pytago ta có \(MB = \sqrt {O{B^2} - O{M^2}}  = \sqrt {{R^2} - {r^2}} \)  mà \({R^2} - {r^2} = 12,5\)(cmt) và \(AB = 2MB\) (cmt) nên \(AB = 2\sqrt {{R^2} - {r^2}}  = 2\sqrt {12,5}  \)\(= 5\sqrt 2 \,cm.\)

Chọn C.

Câu 24

Một hình vuông cạnh a và một đường tròn bán kính r có chu vi bằng nhau. Tỉ số giữa diện tích hình tròn và diện tích hình vuông là:

(A) \(4:\pi \)                       (B) \(\sqrt 2 :\pi \)

(C) \(\pi :\sqrt 2 \)                    (D) \(\pi :4\)

Khoanh tròn vào chữ cái trước kết quả đúng.

Phương pháp giải:

+ Hình vuông cạnh \(a\) có chu vi là \(4.a\) và diện tích là \({a^2}\)

+ Đường tròn bán kính \(r\) có chu vi \(C = 2\pi r\) và diện tích hình tròn là \(S = \pi {r^2}\)

Lời giải chi tiết:

Ta có:

Hình vuông cạnh \(a\) có chu vi là \(4.a\) và diện tích là \({a^2}\) và đường tròn bán kính \(r\) có chu vi \(C = 2\pi r\) và diện tích hình tròn là \(S = \pi {r^2}\) .

Vì theo giả thiết thì hình vuông và đường tròn có chu vi bằng nhau nên \(4a = 2\pi r \Rightarrow \dfrac{r}{a} = \dfrac{2}{\pi }\)

Tỉ số giữa diện tích hình tròn và diện tích hình vuông là \(\dfrac{{\pi {r^2}}}{{{a^2}}} = \pi {\left( {\dfrac{r}{a}} \right)^2} = \pi .\dfrac{4}{{{\pi ^2}}} = \dfrac{4}{\pi } = 4:\pi \) (vì \(\dfrac{r}{a} = \dfrac{2}{\pi }\) (cmt))

Chọn A. 

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài