Bài 9 trang 153 Vở bài tập toán 8 tập 2


Đề bài

Cho biểu thức: 

\(A = \left( {\dfrac{x}{{{x^2} - 4}} + \dfrac{2}{{2 - x}} + \dfrac{1}{{x + 2}}} \right):\)\(\,\left( {\left( {x - 2} \right) + \dfrac{{10 - {x^2}}}{{x + 2}}} \right)\)

a) Rút gọn biểu thức \(A\).

b) Tính giá trị của \(A\) tại \(x\), biết \(\left| x \right| = \dfrac{1}{2}\) .

c) Tìm giá trị của \(x\) để \(A < 0\). 

Phương pháp giải - Xem chi tiết

a) Tìm ĐKXĐ, tìm mẫu thức chung sau đó qui đồng và rút gọn biểu thức. 

b) \(|x| = \dfrac{1}{2} \Leftrightarrow \left[ \begin{gathered}
x = \dfrac{1}{2} \hfill \\
x = - \dfrac{1}{2} \hfill \\ 
\end{gathered} \right.\)

Thay giá trị tương ứng của x vào biểu thức đã được rút gọn rồi tính giá trị của biểu thức đó.

c) Giải bất phương trình với vế trái là biểu thức \(A\) vế phải là \(0\) 

Lời giải chi tiết

ĐKXĐ: \(x \ne  \pm 2\)

a) \(A = \left( {\dfrac{x}{{{x^2} - 4}} + \dfrac{2}{{2 - x}} + \dfrac{1}{{x + 2}}} \right):\)\(\,\left( {\left( {x - 2} \right) + \dfrac{{10 - {x^2}}}{{x + 2}}} \right)\)

\(\begin{array}{l}
= \left[ {\dfrac{x}{{\left( {x + 2} \right)\left( {x - 2} \right)}} - \dfrac{2}{{x - 2}} + \dfrac{1}{{x + 2}}} \right]:\left[ {\left( {x - 2} \right) + \dfrac{{10 - {x^2}}}{{x + 2}}} \right]\\
= \dfrac{{x - 2\left( {x + 2} \right) + x - 2}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}:\dfrac{{\left( {x - 2} \right)\left( {x + 2} \right) + 10 - {x^2}}}{{x + 2}}\\
= \dfrac{{x - 2x - 4 + x - 2}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}:\dfrac{{{x^2} - 4 + 10 - {x^2}}}{{x + 2}}\\
= \dfrac{{ - 6}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}.\dfrac{{x + 2}}{6}\\
= \dfrac{{ - 6.\left( {x + 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right).6}}\\
= \dfrac{1}{{2 - x}}
\end{array}\)  

b) 

\(|x| = \dfrac{1}{2} \Leftrightarrow \left[ \begin{gathered}
x = \dfrac{1}{2} \hfill \\
x = - \dfrac{1}{2} \hfill \\ 
\end{gathered} \right.\)

+) Tại \(x = \dfrac{1}{2}\) (tmđk) thì \( A = \dfrac{1}{{2 - \dfrac{1}{2}}} = \dfrac{1}{{\dfrac{4}{2} - \dfrac{1}{2}}} = \dfrac{1}{{\dfrac{3}{2}}} = \dfrac{2}{3}\)

+) Tại \(x = { - \dfrac{1}{2}}\) (tmđk) thì \( A = \dfrac{1}{{2 - \left( { - \dfrac{1}{2}} \right)}} = \dfrac{1}{{2 + \dfrac{1}{2}}} \)\(\,= \dfrac{1}{{\dfrac{4}{2} + \dfrac{1}{2}}} \)\(\,= \dfrac{1}{{\dfrac{5}{2}}} = \dfrac{2}{5}\)

c) \(A=\dfrac{1}{{2 - x}} < 0\) \( \Leftrightarrow 2 - x < 0\) \(\Leftrightarrow  x > 2\) (tmđk)

Vậy \(x>2\) thì \(A<0\) 

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.