Bài 7 trang 151 Vở bài tập toán 8 tập 2>
Giải bài 7 trang 151 VBT toán 8 tập 2. Giải các phương trình...
Giải các phương trình:
LG a
\(3{x^2} + 2x - 1 = 0\)
Phương pháp giải:
- Biến đổi phương trình về dạng phương trình tích.
- Tìm \(x\)
- Kết luận
Lời giải chi tiết:
\(\begin{array}{l}
3{x^2} + 2x - 1 = 0\\
\Leftrightarrow 2{x^2} + 2x + {x^2} - 1 = 0\\
\Leftrightarrow 2x\left( {x + 1} \right) + \left( {x - 1} \right)\left( {x + 1} \right) = 0\\
\Leftrightarrow \left( {x + 1} \right)\left( {3x - 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x + 1 = 0\\
3x - 1 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = - 1\\
x = \dfrac{1}{3}
\end{array} \right.
\end{array}\)
Vậy \(S = \left\{ { - 1;\dfrac{1}{3}} \right\}\)
LG b
\(\dfrac{{x - 3}}{{x - 2}} + \dfrac{{x - 2}}{{x - 4}} = 3\dfrac{1}{5}\)
Phương pháp giải:
- Tìm điều kiện xác định.
- Qui đồng khử mẫu.
- Rút gọn rồi tìm nghiệm \(x\).
- Đối chiếu với điều kiện xác định rồi kết luận nghiệm.
Lời giải chi tiết:
\(\dfrac{{x - 3}}{{x - 2}} + \dfrac{{x - 2}}{{x - 4}} = 3\dfrac{1}{5}\)
\(\begin{array}{l}
\Leftrightarrow \left\{ \begin{array}{l}
x \ne 2,x \ne 4\\
\left( {x - 3} \right)\left( {x - 4} \right) + {\left( {x - 2} \right)^2} = \dfrac{{16}}{5}\left( {x - 2} \right)\left( {x - 4} \right)
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x \ne 2,x \ne 4\\
5\left( {x - 3} \right)\left( {x - 4} \right) + 5{\left( {x - 2} \right)^2} = 16\left( {x - 2} \right)\left( {x - 4} \right)
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x \ne 2,x \ne 4\\
5{x^2} - 35x + 60 + 5{x^2} - 20x + 20 = 16{x^2} - 96x + 128
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x \ne 2,x \ne 4\\
6{x^2} - 41x + 48 = 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x \ne 2,x \ne 4\\
6{x^2} - 9x - 32x + 48 = 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x \ne 2,x \ne 4\\
3x\left( {2x - 3} \right) - 16\left( {2x - 3} \right) = 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x \ne 2,x \ne 4\\
\left( {3x - 16} \right)\left( {2x - 3} \right) = 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x \ne 2,x \ne 4\\
3x - 16 = 0\,hoặc\,2x - 3 = 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x \ne 2,x \ne 4\\
x = \dfrac{{16}}{3}\,hoặc\,x = \dfrac{3}{2}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \dfrac{{16}}{3}\\
x = \dfrac{3}{2}
\end{array} \right.
\end{array}\)
Vậy \(S = \left\{ {\dfrac{3}{2};\dfrac{{16}}{3}} \right\}\)
Loigiaihay.com
- Bài 8 trang 152 Vở bài tập toán 8 tập 2
- Bài 9 trang 153 Vở bài tập toán 8 tập 2
- Bài 10 trang 154 Vở bài tập toán 8 tập 2
- Bài 6 trang 151 Vở bài tập toán 8 tập 2
- Bài 5 trang 150 Vở bài tập toán 8 tập 2
>> Xem thêm