Bài 3.9 trang 165 SBT giải tích 12


Giải bài 3.9 trang 165 sách bài tập giải tích 12. Tính các nguyên hàm sau đây:...

Lựa chọn câu để xem lời giải nhanh hơn

Tính các nguyên hàm sau đây:

LG câu a

a) \(\int {(x + \ln x){x^2}dx} \)

Phương pháp giải:

Tính nguyên hàm bằng công thức từng phần \(\int {udv}  = uv - \int {vdu} \).

Giải chi tiết:

Đặt  \(u = x + \ln x;dv = {x^2}dx\) \( \Rightarrow \left\{ \begin{array}{l}du = \left( {1 + \dfrac{1}{x}} \right)dx\\v = \dfrac{{{x^3}}}{3}\end{array} \right.\)

Khi đó \(\int {(x + \ln x){x^2}dx} \)\( = \dfrac{{{x^3}}}{3}\left( {x + \ln x} \right) - \int {\dfrac{{{x^3}}}{3}\left( {1 + \dfrac{1}{x}} \right)dx} \)

\( = \dfrac{{{x^4}}}{3} + \dfrac{{{x^3}}}{3}\ln x - \int {\left( {\dfrac{{{x^3}}}{3} + \dfrac{{{x^2}}}{3}} \right)dx} \) \( = \dfrac{{{x^4}}}{3} + \dfrac{{{x^3}}}{3}\ln x - \dfrac{{{x^4}}}{{12}} - \dfrac{{{x^3}}}{9} + C\) \( = \dfrac{{{x^4}}}{4} + \dfrac{{{x^3}}}{3}\left( {\ln x - \dfrac{1}{3}} \right) + C\).

LG câu b

b) \(\int {(x + {{\sin }^2}x)\sin xdx} \)

Phương pháp giải:

Tính nguyên hàm bằng công thức từng phần \(\int {udv}  = uv - \int {vdu} \).

Giải chi tiết:

Đặt \(u = x + {\sin ^2}x,dv = \sin xdx\) \( \Rightarrow \left\{ \begin{array}{l}du = \left( {1 + 2\sin x\cos x} \right)dx\\v =  - \cos x\end{array} \right.\)

LG câu c

c) \(\int {(x + {e^x}){e^{2x}}dx} \)

Phương pháp giải:

Tính nguyên hàm bằng công thức từng phần \(\int {udv}  = uv - \int {vdu} \).


Giải chi tiết:

Đặt \(u = x + {e^x},dv = {e^{2x}}dx\) \( \Rightarrow \left\{ \begin{array}{l}du = \left( {1 + {e^x}} \right)dx\\v = \dfrac{{{e^{2x}}}}{2}\end{array} \right.\)

LG câu d

d) \(\int {(x + \sin x)\dfrac{{dx}}{{{{\cos }^2}x}}} \)

Phương pháp giải:

Tính nguyên hàm bằng công thức từng phần \(\int {udv}  = uv - \int {vdu} \).

Giải chi tiết:

Đặt \(\left\{ \begin{array}{l}u = x + \sin x\\dv = \dfrac{1}{{{{\cos }^2}x}}dx\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}du = \left( {1 + \cos x} \right)dx\\v = \tan x\end{array} \right.\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.6 trên 5 phiếu

Các bài liên quan: - Bài 1: Nguyên hàm

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài