Bài 3.3 trang 164 SBT giải tích 12


Giải bài 3.3 trang 164 sách bài tập giải tích 12. Tìm nguyên hàm của các hàm số sau:...

Lựa chọn câu để xem lời giải nhanh hơn

Tìm nguyên hàm của các hàm số sau:

LG câu a

a) \(f(x) = {(x - 9)^4}\)

Phương pháp giải:

Sử dụng phương pháp đổi biến tìm nguyên hàm.

Giải chi tiết:

Đặt \(x - 9 = t\) \( \Rightarrow dx = dt\)

Khi đó \(\int {{{\left( {x - 9} \right)}^4}dx} \) \( = \int {{t^4}dt}  = \dfrac{{{t^5}}}{5} + C\)\( = \dfrac{{{{\left( {x - 9} \right)}^5}}}{5} + C\)

Vậy \(F\left( x \right) = \dfrac{{{{\left( {x - 9} \right)}^5}}}{5} + C\)

LG câu b

b) \(f(x) = \dfrac{1}{{{{(2 - x)}^2}}}\)

Phương pháp giải:

Sử dụng phương pháp đổi biến tìm nguyên hàm.

Giải chi tiết:

Đặt \(2 - x = t \Rightarrow dx =  - dt\)

Khi đó \(\int {\dfrac{1}{{{{\left( {2 - x} \right)}^2}}}dx}  = \int {\dfrac{{ - dt}}{{{t^2}}}} \) \( = \dfrac{1}{t} + C = \dfrac{1}{{2 - x}} + C\)

Vậy \(F(x) = \dfrac{1}{{2 - x}} + C\)

LG câu c

c) \(f(x) = \dfrac{x}{{\sqrt {1 - {x^2}} }}\)

Phương pháp giải:

Sử dụng phương pháp đổi biến tìm nguyên hàm.

Giải chi tiết:

Đặt \(\sqrt {1 - {x^2}}  = t \Rightarrow 1 - {x^2} = {t^2}\) \( \Rightarrow  - 2xdx = 2tdt \Leftrightarrow xdx =  - tdt\)

Khi đó \(\int {\dfrac{x}{{\sqrt {1 - {x^2}} }}dx}  = \int {\dfrac{{ - tdt}}{t}}  = \int { - dt} \) \( =  - t + C =  - \sqrt {1 - {x^2}}  + C\)

Vậy \(F(x) =  - \sqrt {1 - {x^2}}  + C\)

LG câu d

d) \(f(x) = \dfrac{1}{{\sqrt {2x + 1} }}\)

Phương pháp giải:

Sử dụng phương pháp đổi biến tìm nguyên hàm.

Giải chi tiết:

Đặt \(\sqrt {2x + 1}  = t \Rightarrow 2x + 1 = {t^2}\) \( \Rightarrow 2dx = 2tdt \Rightarrow dx = tdt\)

Khi đó \(\int {\dfrac{1}{{\sqrt {2x + 1} }}dx}  = \int {\dfrac{{tdt}}{t}}  = \int {dt} \) \( = t + C = \sqrt {2x + 1}  + C\)

Vậy \(F(x) = \sqrt {2x + 1}  + C\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 1: Nguyên hàm

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài