Bài 3.5 trang 164 SBT giải tích 12


Giải bài 3.5 trang 164 sách bài tập giải tích 12. Áp dụng phương pháp tính nguyên hàm từng phần, hãy tính:...

Lựa chọn câu để xem lời giải nhanh hơn

Áp dụng phương pháp tính nguyên hàm từng phần, hãy tính:

LG câu a

a) \(\int {(1 - 2x){e^x}} dx\)

Phương pháp giải:

Sử dụng công thức nguyên hàm từng phần \(\int {udv}  = uv - \int {vdu} \).

Giải chi tiết:

Đặt \(\left\{ \begin{array}{l}u = 1 - 2x\\dv = {e^x}dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du =  - 2dx\\v = {e^x}\end{array} \right.\)

Khi đó \(\int {(1 - 2x){e^x}} dx\)\( = \left( {1 - 2x} \right){e^x} + \int {2{e^x}dx} \) \( = \left( {1 - 2x} \right){e^x} + 2{e^x} + C\)\( = \left( {3 - 2x} \right){e^x} + C\)                                                           

LG câu b

b) \(\int {x{e^{ - x}}dx} \)

Phương pháp giải:

Sử dụng công thức nguyên hàm từng phần \(\int {udv}  = uv - \int {vdu} \).

Giải chi tiết:

Đặt \(\left\{ \begin{array}{l}u = x\\dv = {e^{ - x}}dx\end{array} \right.\) \( \Rightarrow \left\{ \begin{array}{l}du = dx\\v =  - {e^{ - x}}\end{array} \right.\)

Khi đó \(\int {x{e^{ - x}}dx} \)\( =  - x{e^{ - x}} + \int {{e^{ - x}}dx} \)\( =  - x{e^{ - x}} - {e^{ - x}} + C\)\( =  - \left( {1 + x} \right){e^{ - x}} + C\)

LG c

c) \(\int {x\ln (1 - x)dx} \)

Phương pháp giải:

Sử dụng công thức nguyên hàm từng phần \(\int {udv}  = uv - \int {vdu} \).

Giải chi tiết:

Đặt \(\left\{ \begin{array}{l}u = \ln \left( {1 - x} \right)\\dv = xdx\end{array} \right.\) \( \Rightarrow \left\{ \begin{array}{l}du =  - \dfrac{1}{{1 - x}}dx\\v = \dfrac{{{x^2}}}{2}\end{array} \right.\)

Khi đó \(\int {x\ln (1 - x)dx} \)\( = \dfrac{{{x^2}}}{2}\ln \left( {1 - x} \right) + \int {\dfrac{{{x^2}}}{{2\left( {1 - x} \right)}}dx} \) \( = \dfrac{{{x^2}}}{2}\ln \left( {1 - x} \right) + \dfrac{1}{2}\int {\left( { - 1 - x + \dfrac{1}{{1 - x}}} \right)dx} \)

\( = \dfrac{{{x^2}}}{2}\ln \left( {1 - x} \right) - \dfrac{1}{2}\int {\left( {\left( {1 + x} \right) - \dfrac{1}{{1 - x}}} \right)dx} \) \( = \dfrac{{{x^2}}}{2}\ln \left( {1 - x} \right) - \dfrac{1}{2}.\dfrac{{{{\left( {1 + x} \right)}^2}}}{2} - \dfrac{1}{2}\ln \left( {1 - x} \right) + C\)

\( = \dfrac{{{x^2}}}{2}\ln \left( {1 - x} \right) - \dfrac{1}{2}\ln \left( {1 - x} \right) - \dfrac{1}{4}{\left( {1 + x} \right)^2} + C\).

LG d

d)  \(\int {x{{\sin }^2}xdx} \)

Phương pháp giải:

Sử dụng công thức nguyên hàm từng phần \(\int {udv}  = uv - \int {vdu} \).

Giải chi tiết:

Ta có: \(\int {x{{\sin }^2}xdx}  = \int {x.\dfrac{{1 - \cos 2x}}{2}dx} \) \( = \int {\left( {\dfrac{x}{2} - \dfrac{{x\cos 2x}}{2}} \right)dx} \) \( = \dfrac{{{x^2}}}{4} - \dfrac{1}{2}\int {x\cos 2xdx} \)

Đặt \(\left\{ \begin{array}{l}u = x\\dv = \cos 2xdx\end{array} \right.\) \( \Rightarrow \left\{ \begin{array}{l}du = dx\\v = \dfrac{{\sin 2x}}{2}\end{array} \right.\)

Khi đó \(\int {x\cos 2xdx} \)\( = \dfrac{{x\sin 2x}}{2} - \int {\dfrac{{\sin 2xdx}}{2}} \) \( = \dfrac{{x\sin 2x}}{2} + \dfrac{{\cos 2x}}{4} + C\)

Vậy \(\int {x{{\sin }^2}xdx} \)\( = \dfrac{{{x^2}}}{4} - \dfrac{1}{2}\left( {\dfrac{{x\sin 2x}}{2} + \dfrac{{\cos 2x}}{4} + C} \right)\)\( = \dfrac{{{x^2}}}{4} - \dfrac{1}{4}x\sin 2x - \dfrac{1}{8}\cos 2x + D\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 1: Nguyên hàm

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài