Bài 3.5 trang 103 SBT hình học 12


Giải bài 3.5 trang 103 sách bài tập hình học 12. Trong không gian Oxyz, hãy tìm trên mặt phẳng (Oxz) một điểm M cách đều ba điểm A(1; 1; 1), B(-1; 1; 0), C(3; 1; -1).

Đề bài

Trong không gian Oxyz, hãy tìm trên mặt phẳng (Oxz) một điểm M cách đều ba điểm A(1; 1; 1), B(-1; 1; 0), C(3; 1; -1).

Phương pháp giải - Xem chi tiết

- Gọi tọa độ của \(M \in \left( {Oxz} \right)\). Tính khoảng cách \(MA,MB,MC\).

- Lập hệ phương trình, giải hệ và kết luận.

Lời giải chi tiết

Điểm M thuộc mặt phẳng (Oxz) có tọa độ là (x; 0; z), cần phải tìm x và z. Ta có:

MA2 = (1 – x)2 + 1 + (1 – z)2

MB2 = (–1 – x)2 + 1 + z2

MC2 = (3 – x)2 + 1 + (–1 – z)2

Theo giả thiết M cách đều ba điểm A, B, C nên ta có  MA2 = MB2 = MC2

\(\begin{array}{l}
\Leftrightarrow \left\{ \begin{array}{l}
{\left( {1 - x} \right)^2} + 1 + {\left( {1 - z} \right)^2} = {\left( { - 1 - x} \right)^2} + 1 + {z^2}\\
{\left( {1 - x} \right)^2} + 1 + {\left( {1 - z} \right)^2} = {\left( {3 - x} \right)^2} + 1 + {\left( { - 1 - z} \right)^2}
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
- 2x + 1 - 2z = 2x\\
1 - 2x - 2z = 9 - 6x + 2z
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
- 4x - 2z + 1 = 0\\
4x - 4z - 8 = 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x = \dfrac{5}{6}\\
z = - \dfrac{7}{6}
\end{array} \right. \Rightarrow M\left( {\dfrac{5}{6};0; - \dfrac{7}{6}} \right)
\end{array}\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí