
Đề bài
Trong không gian Oxyz hãy viết phương trình mặt cầu đi qua bốn điểm A(1; 0; 0), B(0; -2; 0), C(0; 0; 4) và gốc tọa độ O. Hãy xác định tâm và bán kính của mặt cầu đó.
Phương pháp giải - Xem chi tiết
- Gọi dạng phương trình mặt cầu là \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\).
- Thay tọa độ các điểm \(A,B,C,D\) vào phương trình, giải hệ tìm \(a,b,c,d\).
- Từ đó suy ra phương trình mặt cầu, tâm và bán kính.
Lời giải chi tiết
Phương trình mặt cầu (S) cần tìm có dạng: \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\).
Vì \(A \in (S)\) nên ta có: 1 – 2a + d =0 (1)
\(B \in (S)\) nên ta có: 4 + 4b + d = 0 (2)
\(C \in (S)\) nên ta có: 16 – 8c + d = 0 (3)
\(D \in (S)\) nên ta có: d = 0 (4)
Giải hệ 4 phương trình trên ta có: \(d = 0,a = \dfrac{1}{2},b = - 1,c = 2\).
Vậy mặt cầu (S) cần tìm có phương trình là: \({x^2} + {y^2} + {z^2} - x + 2y - 4z = 0\)
Phương trình mặt cầu (S) có thể viết dưới dạng:
\({\left( {x - \dfrac{1}{2}} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 2} \right)^2} - \dfrac{1}{4} - 1 - 4 = 0\)
\( \Leftrightarrow {\left( {x - \dfrac{1}{2}} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 2} \right)^2} = \dfrac{{21}}{4}\)
Vậy mặt cầu (S) có tâm \(I\left( {\dfrac{1}{2}; - 1;2} \right)\) và có bán kính \(r = \dfrac{{\sqrt {21} }}{2}\)
Loigiaihay.com
Giải bài 3.15 trang 104 sách bài tập hình học 12. Trong không gian Oxyz hãy xác định tâm và bán kính các mặt cầu có phương trình sau đây:...
Giải bài 3.14 trang 104 sách bài tập hình học 12. Trong không gian Oxyz hãy lập phương trình mặt cầu trong các trường hợp sau:...
Giải bài 3.13 trang 104 sách bài tập hình học 12. Trong không gian Oxyz cho tam giác ABC có tọa độ các đỉnh là: ...
Giải bài 3.12 trang 104 sách bài tập hình học 12. Tính khoảng cách giữa hai điểm A và B trong mỗi trường hợp sau:...
Giải bài 3.11 trang 104 sách bài tập hình học 12. Tính tích vô hướng của hai vecto trong không gian với các tọa độ đã cho là:...
Giải bài 3.10 trang 104 sách bài tập hình học 12. Cho hình tứ diện ABCD....
Giải bài 3.9 trang 104 sách bài tập hình học 12. Trong không gian Oxyz cho một vecto tùy ý khác vecto...
Giải bài 3.8 trang 103 sách bài tập hình học 12. Trong không gian cho ba vecto tùy ý. Gọi...
Giải bài 3.7 trang 103 sách bài tập hình học 12. Cho hình tứ diện ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AC, BD, AD, BC. Chứng minh rằng:
Giải bài 3.6 trang 103 sách bài tập hình học 12. Cho hình tứ diện ABCD. Chứng minh rằng:...
Giải bài 3.5 trang 103 sách bài tập hình học 12. Trong không gian Oxyz, hãy tìm trên mặt phẳng (Oxz) một điểm M cách đều ba điểm A(1; 1; 1), B(-1; 1; 0), C(3; 1; -1).
Giải bài 3.4 trang 103 sách bài tập hình học 12. Cho hai bộ ba điểm:...
Giải bài 3.3 trang 103 sách bài tập hình học 12. Trong không gian Oxyz cho điểm M có tọa độ (x0; y0 ; z0). Tìm tọa độ hình chiếu vuông góc của điểm M trên các mặt phẳng tọa độ (Oxy), (Oyz), (Ozx).
Giải bài 3.2 trang 103 sách bài tập hình học 12. Trong không gian Oxyz cho vecto .
Giải bài 3.1 trang 103 sách bài tập hình học 12. Trong không gian Oxyz cho ba vecto. Tìm tọa độ của các vecto và biết rằng:...
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: