Bài 3.15 trang 104 SBT hình học 12


Đề bài

Trong không gian Oxyz hãy xác định tâm và bán kính các mặt cầu có phương trình sau đây:

a) x2 + y2 + z2 – 6x + 2y – 16z – 26 = 0 ;

b) 2x2 + 2y2 + 2z2 + 8x – 4y – 12z – 100 = 0

Phương pháp giải - Xem chi tiết

Mặt cầu \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\) có tâm \(I\left( {a;b;c} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} \).

Lời giải chi tiết

a) Tâm \(I(3; -1; 8)\), bán kính \(R = \sqrt {{3^2} + {1^2} + {8^2} + 26}  = 10\)

b) Ta có: \(2{x^2} + 2{x^2} + 2{y^2} + 2{z^2}\) \( + 8x - 4y - 12z - 100 = 0\)

\( \Leftrightarrow {x^2} + {y^2} + {z^2}\) \( + 4x - 2y - 6z - 50 = 0\)

Mặt cầu có tâm \(I(-2; 1; 3)\), bán kính \(R = \sqrt {{2^2} + {1^2} + {3^2} + 50}  = 8\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.