Bài 31 trang 107 Vở bài tập toán 9 tập 2


Tổng hợp đề thi giữa kì 2 lớp 9 tất cả các môn

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa - GDCD

Đề bài

Gọi cung chứa góc \(55^\circ \) ở bài 30 là \(\overparen{AmB}\) . Lấy điểm \({M_1},{M_2}\) và cung \(AmB\) nằm cùng một phía đối với đường thẳng \(AB\). Chứng minh rằng :

a)  \(\widehat {A{M_1}B} > 55^\circ \) ;

b) \(\widehat {A{M_2}B} < 55^\circ\).

Phương pháp giải - Xem chi tiết

 Sử dụng:

+ Số đo của góc có đỉnh bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn

+ Số đo của góc có đỉnh bên trong đường tròn bằng nửa hiệu số đo hai cung bị chắn

Quảng cáo
decumar

Lời giải chi tiết

a)

Gọi \(A'\),\(B'\) lần lượt là giao của \(A{M_1};B{M_1}\) với đường tròn.

Góc \(A{M_1}B\) là góc có đỉnh nằm trong đường tròn nên ta có :

\(\widehat {A{M_1}B}\)\( = \dfrac{1}{2}\) (sđ\(\overparen{AB}+\) sđ\( \overparen{A'B'}\)) 

Mà \(\widehat {AA'B} = \dfrac{1}{2}\) sđ\(\overparen{AB}\)\( = 55^\circ \) vì \(\dfrac{1}{2}\) (sđ\(\overparen{AB}+\) sđ\( \overparen{A'B'}\)) \( > \dfrac{1}{2}\)sđ \(\overparen{AB}\) nên \(\widehat {A{M_1}B} > 55^\circ \)

b)

Góc \(A{M_2}B\) là góc có đỉnh nằm bên ngoài đường tròn nên ta có :

 \(\widehat {A{M_2}B} = \dfrac{1}{2}\) (sđ\(\overparen{AB}-\) sđ\( \overparen{A'B'}\)) 

Mà \(\widehat {AB'B} = \dfrac{1}{2}\) sđ\(\overparen{AB}\)\( = 55^\circ \) vì \(\dfrac{1}{2}\) (sđ\(\overparen{AB}-\) sđ\( \overparen{A'B'}\))\( < \dfrac{1}{2}\)sđ\(\overparen{AB}\) nên \(\widehat {A{M_2}B} < 55^\circ \) .

Loigiaihay.com


Bình chọn:
4.3 trên 4 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

Tham Gia Group 2K9 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com, cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.