Bài 2.49 trang 125 SBT giải tích 12


Giải bài 2.49 trang 125 sách bài tập giải tích 12. Giải các phương trình logarit sau:...

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình logarit :

a) \(\displaystyle {\log _2}({2^x} + 1).{\log _2}({2^{x + 1}} + 2) = 2\)

b) \(\displaystyle {x^{\log 9}} + {9^{\log x}} = 6\)

c) \(\displaystyle {x^{3{{\log }^3}x - \frac{2}{3}\log x}} = 100\sqrt[3]{{10}}\)

d) \(\displaystyle 1 + 2{\log _{x + 2}}5 = {\log _5}(x + 2)\)

LG a

\(\displaystyle {\log _2}({2^x} + 1).{\log _2}({2^{x + 1}} + 2) = 2\)

Phương pháp giải:

- Đặt ẩn phụ \(\displaystyle t = {\log _2}({2^x} + 1)\).

- Biến đổi phương trình về bậc hai ẩn \(\displaystyle t\).

- Giải phương trình và suy ra nghiệm.

Lời giải chi tiết:

\(PT\Leftrightarrow {\log _2}\left( {{2^x} + 1} \right) . {\log _2}\left( {{{2.2}^x} + 2} \right) = 2\)

\(\displaystyle \Leftrightarrow  {\log _2}({2^x} + 1).{\log _2}\left[ {2({2^x} + 1)} \right] = 2\)

\( \Leftrightarrow {\log _2}\left( {{2^x} + 1} \right).\left[ {{{\log }_2}2 + {{\log }_2}\left( {{2^x} + 1} \right)} \right] = 2\)

\(\displaystyle  \Leftrightarrow {\log _2}({2^x} + 1).\left[ {1 + {{\log }_2}({2^x} + 1)} \right] = 2\)

Đặt \(\displaystyle t = {\log _2}({2^x} + 1)\), ta có phương trình \(\displaystyle t\left( {1 + t} \right) = 2\; \Leftrightarrow {t^2} + t - 2 = 0\)\(\displaystyle  \Leftrightarrow \left[ \begin{array}{l}t = 1\\t =  - 2\end{array} \right.\)

\(\displaystyle  \Rightarrow \left[ \begin{array}{l}{\log _2}({2^x} + 1) = 1\\{\log _2}({2^x} + 1) =  - 2\end{array} \right.\) \(\displaystyle  \Leftrightarrow \left[ \begin{array}{l}{2^x} + 1 = 2\\{2^x} + 1 = \frac{1}{4}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{2^x} = 1\\{2^x} =  - \frac{3}{4}(l)\end{array} \right.\)\(\displaystyle  \Leftrightarrow x = 0\)

LG b

\(\displaystyle {x^{\log 9}} + {9^{\log x}} = 6\)

Phương pháp giải:

- Tìm ĐKXĐ.

- Thu gọn phương trình và đặt \(\displaystyle t = {x^{\log 9}}\).

- Giải phương trình ẩn \(\displaystyle t\) và kết luận nghiệm.

Lời giải chi tiết:

ĐK: \(\displaystyle x > 0\).

Ta có: \(\displaystyle \log ({x^{\log 9}}) = \log 9.\log x\) và \(\displaystyle \log ({9^{\log x}}) = \log x.\log 9\)

Nên \(\displaystyle \log ({x^{\log 9}}) = \log ({9^{\log x}})\) suy ra \(\displaystyle {x^{\log 9}} = {9^{\log x}}\)

Đặt \(\displaystyle t = {x^{\log 9}}\), ta được phương trình \(\displaystyle 2t = 6 \Leftrightarrow t = 3\) \(\displaystyle  \Leftrightarrow {x^{\log 9}} = 3\)

\(\displaystyle  \Leftrightarrow \log ({x^{\log 9}}) = \log 3\)\(\displaystyle  \Leftrightarrow \log 9.\log x = \log 3\)

\(\displaystyle  \Leftrightarrow \log x = \frac{{\log 3}}{{\log 9}} = \frac{{\log 3}}{{\log {3^2}}} = \frac{{\log 3}}{{2\log 3}}\)\(\displaystyle  \Leftrightarrow \log x = \frac{1}{2}\)

\(\displaystyle  \Leftrightarrow x = \sqrt {10} \)  (thỏa mãn điều kiện \(\displaystyle x > 0\))

LG c

\(\displaystyle {x^{3{{\log }^3}x - \frac{2}{3}\log x}} = 100\sqrt[3]{{10}}\)

Phương pháp giải:

Logarit cơ số \(\displaystyle 10\) cả hai vế, đặt ẩn phụ \(\displaystyle t = \log x\) và giải phương trình.

Lời giải chi tiết:

ĐK: \(\displaystyle x > 0\).

Lấy logarit thập phân hai vế của phương trình đã cho, ta được:

\(\begin{array}{l}
\log \left[ {{x^{3{{\log }^3}x - \frac{2}{3}\log x}}} \right] = \log \left( {100\sqrt[3]{{10}}} \right)\\
\Leftrightarrow \left( {3{{\log }^3}x - \frac{2}{3}\log x} \right)\log x = \log \left( {{{10}^2}{{.10}^{\frac{1}{3}}}} \right)\\
\Leftrightarrow \left( {3{{\log }^3}x - \frac{2}{3}\log x} \right)\log x = \log {10^{\frac{7}{3}}}
\end{array}\)

\(\displaystyle \Leftrightarrow (3{\log ^3}x - \frac{2}{3}\log x).\log x = \frac{7}{3}\)

\( \Leftrightarrow 3{\log ^4}x - \frac{2}{3}{\log ^2}x - \frac{7}{3} = 0\)

Đặt \(\displaystyle t = \log x\), ta được phương trình \(\displaystyle 3{t^4} - \frac{2}{3}{t^2} - \frac{7}{3} = 0\)

\(\displaystyle  \Leftrightarrow 9{t^4} - 2{t^2} - 7 = 0\)\(\displaystyle  \Leftrightarrow \left[ \begin{array}{l}{t^2} = 1\\{t^2} =  - \frac{7}{9}(l)\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = 1\\t =  - 1\end{array} \right.\) \(\displaystyle  \Rightarrow \left[ \begin{array}{l}\log x = 1\\\log x =  - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 10\\x = \frac{1}{{10}}\end{array} \right.\).

LG d

\(\displaystyle 1 + 2{\log _{x + 2}}5 = {\log _5}(x + 2)\)

Phương pháp giải:

Đặt ẩn phụ \(\displaystyle t = {\log _5}(x + 2)\), giải phương trình ẩn \(\displaystyle t\) và suy ra nghiệm.

Lời giải chi tiết:

ĐK: \(\left\{ \begin{array}{l}x + 2 > 0\\x + 2 \ne 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > - 2\\x \ne - 1\end{array} \right.\)

Đặt \(\displaystyle t = {\log _5}(x + 2)\Leftrightarrow x + 2 = {5^t}\) ta có:

\(\begin{array}{l}
1 + 2{\log _{{5^t}}}5 = t\\
\Leftrightarrow 1 + \frac{2}{t}{\log _5}5 = t
\end{array}\)

\(\displaystyle \Leftrightarrow 1 + \frac{2}{t} = t\)\(\displaystyle  \Leftrightarrow {t^2} - t - 2 = 0,t \ne 0\)

\(\displaystyle  \Leftrightarrow \left[ \begin{array}{l}t =  - 1\\t = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{\log _5}(x + 2) =  - 1\\{\log _5}(x + 2) = 2\end{array} \right.\)\(\displaystyle  \Leftrightarrow \left[ \begin{array}{l}x + 2 = \frac{1}{5}\\x + 2 = 25\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  - \frac{9}{5}\\x = 23\end{array}(TM) \right.\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài